Collaborative Research: Understanding Plasma-Liquid Interactions Through Controlled Plasma-Microdroplet Experiments and Modeling

合作研究:通过受控等离子体-微滴实验和建模了解等离子体-液体相互作用

基本信息

  • 批准号:
    1903151
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

This collaborative research project between University of Minnesota-Twin Cities and University of Michigan-Ann Arbor will study the interaction of a water droplet with an atmospheric pressure plasma - a reactive gas of neutral atoms and molecules, charged radicals and ions, and electrons. Chemically reactive liquids are used throughout society, from cleaning fluids in the home to customized solutions for pharmaceutical manufacturing; and now increasingly in biomedical applications. Customizing the reactivity of these liquids is a challenge, particularly when the active species have short lifetimes. Atmospheric pressure plasmas are an ideal medium to produce chemical reactivity; and plasma-liquid interactions leverage the ability to generate chemically reactive species in plasmas to produce unique chemical reactivity in the liquid. This project will also develop and support an annual one-week US Low Temperature Plasma School aimed to provide opportunities for graduate students from across the country to be immersed in low temperature plasma science and learn from leading researchers in their field.In this research project, the interaction of a single water droplet with a controlled diffuse cold atmospheric pressure plasma will be investigated with the goal of quantifying the reaction of plasma produced species with liquids. The reaction kinetics occurring near the boundary between the gas plasma and liquid, resulting in interfacial transport, becomes increasingly complex when transport and reactivity are highly coupled. This is often the case when transport includes short-lived highly reactive species as in both the plasma and liquid phases, and species transfer is transport limited. Plasma activation of aerosols and small liquid droplets interspersed in the gas plasma provides opportunities to reduce transport limits to a minimum. The experimental apparatus at University of Minnesota will uniquely enable the investigation of plasma interactions with a single droplet of known initial and final composition, passing through a well-characterized plasma. Multi-phase plasma modeling at University of Michigan will comprehensively address this complex system. The anticipated results will, in particular, elucidate droplet charging, plasma induced droplet evaporation, transport mechanisms of short-lived species and convective transport effects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
明尼苏达大学双城分校和密歇根大学安娜堡分校之间的这项合作研究项目将研究水滴与大气压等离子体的相互作用-中性原子和分子,带电自由基和离子以及电子的反应气体。化学反应性液体在整个社会中使用,从家庭清洁液到制药定制解决方案;现在越来越多地用于生物医学应用。 定制这些液体的反应性是一个挑战,特别是当活性物质具有短寿命时。大气压等离子体是产生化学反应性的理想介质;并且等离子体-液体相互作用利用在等离子体中产生化学反应性物质的能力以在液体中产生独特的化学反应性。 该项目还将开发和支持一年一度的为期一周的美国低温等离子体学校,旨在为来自全国各地的研究生提供沉浸在低温等离子体科学中并向其领域的领先研究人员学习的机会。在这个研究项目中,我们将研究单个水滴与受控扩散的冷大气压等离子体之间的相互作用,其目的是对反应进行量化等离子体产生的物种与液体。 当传输和反应高度耦合时,在气体等离子体和液体之间的边界附近发生的反应动力学,导致界面传输,变得越来越复杂。当传输包括短寿命的高反应性物质(如在等离子体和液相中)并且物质转移是传输受限的时,通常是这种情况。气溶胶和散布在气体等离子体中的小液滴的等离子体活化提供了将运输限制降低到最低限度的机会。 明尼苏达大学的实验装置将独特地使等离子体与已知初始和最终组成的单个液滴的相互作用的研究成为可能,该液滴穿过具有良好特征的等离子体。密歇根大学的多相等离子体建模将全面解决这个复杂的系统。预期结果将特别阐明液滴充电、等离子体诱导液滴蒸发、短寿命物种的运输机制和对流运输效应。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid inactivation of airborne porcine reproductive and respiratory syndrome virus using an atmospheric pressure air plasma
  • DOI:
    10.1002/ppap.201900269
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    G. Nayak;Austin J. Andrews;I. Marabella;H. Aboubakr;S. Goyal;B. Olson;M. Torremorell;P. Bruggeman-P.-Bru
  • 通讯作者:
    G. Nayak;Austin J. Andrews;I. Marabella;H. Aboubakr;S. Goyal;B. Olson;M. Torremorell;P. Bruggeman-P.-Bru
The 2022 Plasma Roadmap: low temperature plasma science and technology
  • DOI:
    10.1088/1361-6463/ac5e1c
  • 发表时间:
    2022-09-15
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Adamovich, I;Agarwal, S.;von Woedtke, T.
  • 通讯作者:
    von Woedtke, T.
Characterization of an RF-driven argon plasma at atmospheric pressure using broadband absorption and optical emission spectroscopy
  • DOI:
    10.1063/5.0035488
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    G. Nayak;M. Simeni Simeni-M.-Simeni-Simeni-2125881320;J. Rosato;N. Sadeghi;P. Bruggeman
  • 通讯作者:
    G. Nayak;M. Simeni Simeni-M.-Simeni-Simeni-2125881320;J. Rosato;N. Sadeghi;P. Bruggeman
Towards prevention and prediction of infectious diseases with virus sterilization using ultraviolet light and low-temperature plasma and bio-sensing devices for health and hygiene care
  • DOI:
    10.35848/1347-4065/ac1c3d
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    S. Kumagai;C. Nishigori;T. Takeuchi;P. Bruggeman;K. Takashima;Hideki Takahashi;T. Kaneko;E. Choi;K. Nakazato;M. Kambara;K. Ishikawa
  • 通讯作者:
    S. Kumagai;C. Nishigori;T. Takeuchi;P. Bruggeman;K. Takashima;Hideki Takahashi;T. Kaneko;E. Choi;K. Nakazato;M. Kambara;K. Ishikawa
Sheath formation around a dielectric droplet in a He atmospheric pressure plasma
  • DOI:
    10.1063/5.0103446
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. Meyer;G. Nayak;P. Bruggeman;M. Kushner
  • 通讯作者:
    M. Meyer;G. Nayak;P. Bruggeman;M. Kushner
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Bruggeman其他文献

Absolute OH density measurements in an atmospheric pressure dc glow discharge in air with water electrode by broadband UV absorption spectroscopy
通过宽带紫外吸收光谱法利用水电极测量空气中大气压直流辉光放电中的绝对 OH 密度
  • DOI:
    10.1088/0022-3727/48/42/424008
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qing Xiong;Zhiqiang Yang;Peter Bruggeman
  • 通讯作者:
    Peter Bruggeman
Development of a Chronic Wound Healing Device
慢性伤口愈合装置的开发
Rapid carbon-free iron ore reduction using an atmospheric pressure hydrogen microwave plasma
  • DOI:
    10.1016/j.cej.2023.145025
  • 发表时间:
    2023-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sachin Kumar;Zichang Xiong;Julian Held;Peter Bruggeman;Uwe R. Kortshagen
  • 通讯作者:
    Uwe R. Kortshagen
Plasma characteristics and electrical breakdown between metal and water electrodes
金属和水电极之间的等离子体特性和电击穿
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Bruggeman;E. Ribežl;J. Degroote;J. Vierendeels;C. Leys
  • 通讯作者:
    C. Leys

Peter Bruggeman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Bruggeman', 18)}}的其他基金

Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318493
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Plasma-Catalysis in Confined Spaces for Cold Start NOx Abatement in Automotive Exhaust
NSF-DFG Confine:密闭空间中的等离子体催化用于冷启动汽车尾气中的氮氧化物减排
  • 批准号:
    2234270
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
GCR: Collaborative Research: Plasma-Biofilm Interactions at the Intersection of Physics, Chemistry, Biology and Engineering
GCR:合作研究:物理、化学、生物学和工程学交叉点的等离子体-生物膜相互作用
  • 批准号:
    2020695
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
2018 Plasma Processing Science: Fundamental Insights in Plasma Processes
2018 等离子体加工科学:等离子体工艺的基本见解
  • 批准号:
    1824150
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Mechanistic origins of synergetic effects in plasma catalysis
合作研究:SusChEM:等离子体催化协同效应的机制起源
  • 批准号:
    1703439
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
2016 Plasma Processing Science: Plasmas with Complex Interactions: Exploiting the Non-Equilibrium.
2016 等离子体处理科学:具有复杂相互作用的等离子体:利用非平衡。
  • 批准号:
    1615381
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Unraveling the Unique Properties of Transient Discharges in Bubbles and Liquid Water
揭示气泡和液态水中瞬态放电的独特性质
  • 批准号:
    1500135
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325464
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
  • 批准号:
    2314272
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了