Exploring the Impacts of Data Science Education through a Course-based Undergraduate Research Experience and Short Lab Modules

通过基于课程的本科研究经验和短期实验室模块探索数据科学教育的影响

基本信息

  • 批准号:
    2021013
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

This project aims to serve the national interest by developing a scalable data-science Course-based Undergraduate Research Experience (CURE) in genomics for increasing quantitative literacy and persistence in undergraduate students. The project will employ a CURE to engage students in genuine scientific research as part of the course curriculum. Data science projects will be developed to create a scalable CURE that can be offered at both community colleges and four-year teaching institutions to impact diverse student populations. As such, this project will increase access to research opportunities for primarily teaching colleges and their students to increase participation in data science. By exploring the efficacy of a data science CURE as an intervention, this project will provide insights on how to increase quantitative literacy and persistence in STEM. This project seeks to investigate how CUREs can increase student persistence and improve analytical skills. In particular, the project aims to generate knowledge on how a data science intensive CURE impacts the student learning outcomes. The outcomes will be evaluated for student populations at a research university (Johns Hopkins University) and a community college (Clovis Community College, a teaching institution with a student population that is 40% Hispanic and 20% first-generation). A validated tool assessing factors linked to persistence in STEM (PITS) will be used to investigate whether a data science CURE can produce increases in these factors similar to those seen in previously established CUREs. Similarly, the recently validated BioSQuaRE tool will be used to assess improvements in quantitative skills. Evaluating these measures with two very different student populations and institutional settings will expand knowledge of CURE impacts and lay the groundwork for comparisons across a wide range of student populations. The project will also investigate student attitudes towards data science and evaluate whether incorporating data science lab modules in a lower-division undergraduate course is an effective strategy to attract and prepare students to participate in scientific research opportunities. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过在基因组学领域开发可扩展的基于数据科学课程的本科生研究体验(CURE)来服务于国家利益,以提高本科生的定量素养和持久性。该项目将采用CURE让学生参与真正的科学研究,作为课程的一部分。将开发数据科学项目,以创建可扩展的CURE,可在社区学院和四年制教学机构提供,以影响不同的学生群体。因此,该项目将增加主要教学学院及其学生获得研究机会的机会,以增加对数据科学的参与。通过探索数据科学CURE作为干预措施的有效性,该项目将提供有关如何提高STEM定量素养和持久性的见解。这个项目旨在研究如何CURE可以提高学生的持久性和提高分析能力。特别是,该项目旨在生成有关数据科学密集型CURE如何影响学生学习成果的知识。将对一所研究型大学(约翰霍普金斯大学)和一所社区学院(克洛维斯社区学院,一所教学机构,学生人口中有40%是西班牙裔,20%是第一代)的学生群体的结果进行评估。一个经过验证的工具评估与STEM(PITS)持久性相关的因素,将用于调查数据科学CURE是否可以产生类似于先前建立的CURE中所见的这些因素的增加。同样,最近经过验证的BioScore RE工具将用于评估定量技能的改进。用两个非常不同的学生群体和机构环境来评估这些措施,将扩大对CURE影响的了解,并为在广泛的学生群体中进行比较奠定基础。该项目还将调查学生对数据科学的态度,并评估在低年级本科课程中纳入数据科学实验室模块是否是吸引和准备学生参与科学研究机会的有效策略。NSF IUSE:EHR计划支持研究和开发项目,以提高所有学生STEM教育的有效性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frederick Tan其他文献

Frederick Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

IMPACTS站点土壤铝活化机制研究
  • 批准号:
    40273045
  • 批准年份:
    2002
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

EcoTraceAI: A Novel AI-based Platform for data collection and validation for measuring the environmental impacts of the supply chain in the fashion industry.
EcoTraceAI:一个基于人工智能的新型平台,用于数据收集和验证,用于衡量时尚行业供应链的环境影响。
  • 批准号:
    10114149
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    SME Support
Collaborative Research: Understanding the Impacts of Automated Vehicles on Traffic Flow Using Empirical Data
合作研究:利用经验数据了解自动驾驶汽车对交通流量的影响
  • 批准号:
    2401476
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Using Earth-Observation data to classify Atmospheric Rivers and investigate their impacts on the stability of West Antarctic ice shelves
利用地球观测数据对大气河流进行分类并研究其对南极西部冰架稳定性的影响
  • 批准号:
    2886186
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Health equity and the impacts of EHR data bias associated with social determinants
健康公平以及与社会决定因素相关的电子病历数据偏差的影响
  • 批准号:
    10584190
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Understanding the impacts of minimum wages in South Africa: Evidence using national corporate tax data
了解南非最低工资的影响:使用国家企业税收数据的证据
  • 批准号:
    23K01367
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Using massive, multi-regional EHR data to estimate the impacts of climate change on fungal disease epidemiology in the U.S.
使用大量、多区域 EHR 数据来估计气候变化对美国真菌病流行病学的影响
  • 批准号:
    10681813
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
A National Neighborhood Data Resource to Understand Inequities in the Health and Socioeconomic Impacts of COVID-19 in the United States
用于了解美国 COVID-19 健康和社会经济影响中的不平等现象的全国邻里数据资源
  • 批准号:
    10609939
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Assessment of Spruce Beetle Impacts on Boreal Forests in southwest Yukon Using Imaging Spectroscopy and Laser Scanning Data
使用成像光谱和激光扫描数据评估云杉甲虫对育空地区西南部北方森林的影响
  • 批准号:
    574841-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Inventive AI/ML software, to improve ESG data management and increase disclosure, enabling companies to visualise impacts and improve their sustainability performance.
创造性的人工智能/机器学习软件,可改善 ESG 数据管理并增加披露,使公司能够可视化影响并提高其可持续发展绩效。
  • 批准号:
    10035663
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
CAREER: Bridging the Global Gap on Understanding Downburst Impacts on Buildings: Field Data-Modeling Research and Education for More Resilient Communities
职业:弥合理解下击暴流对建筑物影响的全球差距:为更具复原力的社区进行现场数据建模研究和教育
  • 批准号:
    2146277
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了