EAGER: Membrane Allostery: How membrane mechanics regulates activity of membrane receptors

EAGER:膜变构:膜力学如何调节膜受体的活性

基本信息

  • 批准号:
    2022385
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Many proteins function by relaying information of chemical activity at one site to a distant site on the same molecule. This simple concept of long-distance communication – collectively referred to as allostery – reverberates across much of biology by providing the most rapid, direct, and efficient means to switch proteins between functional and non-functional forms. But can such action-at-distance also arise when the two sites reside on different, but closely interacting, biological assemblies? This project seeks to address this question by experimentally investigating long-distance communication between cellular membranes and a ubiquitous protein called E-cadherin, which is embedded within these membranes. This project uses single-molecule measurements with model membranes and living cells to tease-out relations between the mechanical properties of the membrane and the molecular-level organization and function of E-cadherin. These studies will address how cell membranes control the reorganization of E-cadherins on the cell surface and consequently regulate cell interactions and cell migration during tissue formation and wound healing. The effort also provides benefit to the broader scientific community by establishing a new paradigm that links the global material properties of cellular membranes with biochemical behaviors of individual proteins. The work will (1) train graduate and undergraduate students in interdisciplinary collaborative research combining tools, techniques, and perspectives from membrane biophysics, single molecule science, soft matter, mechanobiology, and biochemistry and (2) implement proactive mechanisms to engage underrepresented minorities and contribute directly to enhancing diversity, inclusion, and equity with the STEM fields. It thus integrates outreach, education, and research in basic interdisciplinary research at the interface between the physical and biological sciences. The researchers will address a central hypothesis that changes in membrane mechanical properties – such as those elicited by an upstream mechanical stimuli – can induce allosteric activation of embedded membrane proteins. They will combine approaches, methodologies, and tools developed in single-molecule biophysics, functional protein dynamics, and membrane mechanics. Specifically, they will use (1) quantitative characterization methods including single molecule force - fluorescence microscopy, wide-field and high-content spinning disk confocal fluorescence microscopy, and phase contrast optical microscopy; (2) molecularly-tailored and mechanically activated membrane models (e.g., giant lipid vesicles subjected to well-defined osmotic stresses); and (3) living cells expressing fluorescently tagged, embedded membrane proteins. As a test-bed, the proposal investigates the force-induced clustering of E-cadherin, a key cell-surface adhesion receptor, which is essential in orchestrating complex movement of cells during tissue formation and in maintaining tissue integrity. The PI and co-PI will focus their efforts to resolve key determinants of the force-induced protein clustering in a minimal model and establish biophysical determinants for allosteric protein clustering on live cell surfaces. Successful completion of this EAGER application will establish the experimental rules underlying membrane allostery, in the specific context of cell-cell adhesion. These principals would be broadly applicable to membrane allostery across multiple aspects of cellular organization, dynamics, and function including signaling, homeostasis and adaptation, and mechanobiology. Even more generally, the insights obtained from this research should provide experimental data for determining whether global mechanical properties can influence properties of single molecules.This award is supported by the Molecular Biophysics and Cellular Dynamics and Function clusters of Molecular and Cellular Biosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多蛋白质的功能是将同一分子上一个位点的化学活性信息传递到另一个位点。这种简单的远距离通信概念-统称为变构-通过提供最快速,直接和有效的手段来在功能和非功能形式之间切换蛋白质,在生物学的大部分领域都产生了反响。但是,当这两个位点位于不同但密切相互作用的生物集合体上时,这种远距离作用也会出现吗?该项目旨在通过实验研究细胞膜和一种名为E-cadherin的普遍存在的蛋白质之间的长距离通信来解决这个问题,这种蛋白质嵌入在这些膜中。该项目使用模型膜和活细胞的单分子测量来梳理膜的机械特性与E-钙粘蛋白的分子水平组织和功能之间的关系。这些研究将解决细胞膜如何控制细胞表面的E-钙粘蛋白的重组,从而调节组织形成和伤口愈合过程中的细胞相互作用和细胞迁移。这项工作还通过建立一种新的范式,将细胞膜的整体材料特性与单个蛋白质的生化行为联系起来,为更广泛的科学界带来了好处。这项工作将(1)培训研究生和本科生进行跨学科合作研究,结合膜生物物理学,单分子科学,软物质,机械生物学和生物化学的工具,技术和观点,(2)实施积极主动的机制,以吸引代表性不足的少数民族,并直接促进STEM领域的多样性,包容性和公平性。 因此,它在物理科学和生物科学之间的界面上整合了基础跨学科研究的推广,教育和研究。 研究人员将解决一个中心假设,即膜机械特性的变化-例如由上游机械刺激引起的变化-可以诱导嵌入的膜蛋白的变构激活。 他们将结合联合收割机的方法,方法和单分子生物物理学,功能蛋白质动力学和膜力学开发的工具。具体而言,他们将使用(1)定量表征方法,包括单分子力荧光显微镜、宽视场和高含量旋转盘共聚焦荧光显微镜和相差光学显微镜;(2)分子定制和机械活化的膜模型(例如,巨大的脂质囊泡经受明确的渗透应力);和(3)表达荧光标记的包埋膜蛋白的活细胞。作为一个试验平台,该提案研究了力诱导的E-钙粘蛋白的聚集,E-钙粘蛋白是一种关键的细胞表面粘附受体,在组织形成过程中协调细胞的复杂运动和维持组织完整性方面至关重要。PI和co-PI将集中精力在最小模型中解决力诱导蛋白质聚集的关键决定因素,并建立活细胞表面变构蛋白质聚集的生物物理决定因素。EAGER应用的成功完成将在细胞-细胞粘附的特定背景下建立膜变构的实验规则。 这些原理将广泛适用于跨细胞组织、动力学和功能的多个方面的膜变构,包括信号传导、稳态和适应以及机械生物学。甚至更一般地,从这项研究中获得的见解应该为确定整体力学性质是否会影响单个分子的性质提供实验数据。该奖项由分子和细胞生物科学的分子生物物理学和细胞动力学和功能集群支持。该奖项反映了NSF的法定使命,并被认为值得通过利用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Atul Parikh其他文献

Supported membrane configuration: a versatile model for deciphering lipid-protein interplay at cellular membranes
  • DOI:
    10.1016/j.nano.2006.10.129
  • 发表时间:
    2006-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Atul Parikh
  • 通讯作者:
    Atul Parikh
Long-Range Smectic Coupling of Phase Separated Domains in Ternary Mixture Lipid Multilayers
  • DOI:
    10.1016/j.bpj.2012.11.3268
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    Yicong Ma;Lobat Tayebi;Daryoosh Vashaee;Gang Chen;Atul Parikh;Sunil Sinha
  • 通讯作者:
    Sunil Sinha
X-Ray Scattering from Gold Labeled Supported Membranes
  • DOI:
    10.1016/j.bpj.2009.12.1538
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Curt M. DeCaro;Laurence B. Lurio;Justin Berry;Sunil K. Sinha;Gang Chen;Atul Parikh;Adrian Brozell
  • 通讯作者:
    Adrian Brozell
First Observation of Dynamics in Lipid Multilayers using X-ray Photon Correlation Spectroscopy (XPCS)
  • DOI:
    10.1016/j.bpj.2010.12.3616
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Yicong Ma;Gang Chen;Curt DeCaro;Justin Berry;Mark Servantes;Lobat Tayebi;Zhang Jiang;Suresh Narayanan;Alec Sandy;Hyunjung Kim;Atul Parikh;Laurence Lurio;Sunil Sinha
  • 通讯作者:
    Sunil Sinha

Atul Parikh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Atul Parikh', 18)}}的其他基金

Crowding and Confinement: Coupling of Bulk and Membrane Phase Separation in Giant Vesicles
拥挤和限制:巨囊泡中体相分离和膜相分离的耦合
  • 批准号:
    2342436
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Myelin Figures: Non-equilibrium organization of amphiphiles induced by hydration
髓磷脂图:水合诱导的两亲物的非平衡组织
  • 批准号:
    2104123
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: (ST1) Motile Matter- Reconstituting Cell Motility using Osmotic Robots
EAGER:(ST1)运动物质 - 使用渗透机器人重建细胞运动性
  • 批准号:
    1940020
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Shaping membrane biointerfaces: shape-adaptation in giant vesicles powered by osmotic stresses
塑造膜生物界面:渗透应力驱动的巨型囊泡的形状适应
  • 批准号:
    1810540
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Conference: 2016 Biointerface Science: Active, Adaptive, and Responsive Biointerfaces GRC & GRS
会议:2016 生物界面科学:主动、自适应和响应生物界面 GRC
  • 批准号:
    1608489
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Isothermal Phase Transition in Lipid Vesicles and Swell-Burst Cycles
合作研究:脂质囊泡中的等温相变和膨胀-爆裂循环
  • 批准号:
    1505056
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Curvature-dependent Lipid Organization at Surfaces
表面曲率依赖性脂质组织
  • 批准号:
    1034569
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

IUCRC Phase III University of Colorado Boulder: Center for Membrane Applications, Science and Technology (MAST)
IUCRC 第三阶段科罗拉多大学博尔德分校:膜应用、科学与技术中心 (MAST)
  • 批准号:
    2310937
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Optimal cell factories for membrane protein production
用于膜蛋白生产的最佳细胞工厂
  • 批准号:
    BB/Y007603/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
  • 批准号:
    10749672
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
Study on mitigation of gypsum scaling during membrane distillation operation
膜蒸馏运行过程中石膏结垢缓解研究
  • 批准号:
    24K17543
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Super selective hydrogen permeation through mixed proton and electron conducting asymmetric graphene based membrane
通过混合质子和电子传导不对称石墨烯基膜的超选择性氢渗透
  • 批准号:
    24K17588
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Biogenesis of the mitochondrial beta-barrel membrane protein at the intermembrane space.
膜间空间线粒体β-桶膜蛋白的生物发生。
  • 批准号:
    24K18071
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dynamics and catalysis in integral membrane pyrophosphatases
整合膜焦磷酸酶的动力学和催化
  • 批准号:
    BB/T006048/2
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Unlocking the potential for winemaking applications of membrane filtration
释放膜过滤酿酒应用的潜力
  • 批准号:
    IM240100133
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Mid-Career Industry Fellowships
Cellular Ageing: Is the Plasma Membrane the Control Hub?
细胞衰老:质膜是控制中心吗?
  • 批准号:
    DP240103193
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了