ASCENT: Photonically Driven mm-Wave Communication Platform

ASCENT:光子驱动毫米波通信平台

基本信息

  • 批准号:
    2023775
  • 负责人:
  • 金额:
    $ 130万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The ever-increasing demand for wireless communications has created a need for extremely wideband radio transmitters that can deliver multi-giga-bit-per-second data rates to individual users. A promising approach that can enable these high data rates and even future faster tera-bit-per-second (Tbps) data rate is the use of the millimeter-wave (mm-wave) spectrum (30 to 300 GHz) which readily provides a vast amount of bandwidth. Cellular networks operating at mm-wave frequencies will increase the required base station bandwidth significantly, but they will also decrease the size of each cell dramatically due to the large path loss and atmospheric absorption at these frequencies. As a result, installing a base station on every light pole may become necessary to guarantee coverage in an urban environment. This scenario creates many technical challenges since the baseband rack-mount hardware equipment cannot be placed adjacent to each antenna in this case. To address this, solutions are needed that allow for dense deployment of compact mm-wave base stations with Tbps-level throughput whose complex communication equipment can be placed away from the antenna itself. Compared to pure electronic solutions, photonic technologies offer many technical advantages to realize such wideband systems. However, traditional photonic approaches are not scalable and suffer from large insertion loss and large footprint when cascading discrete components. This project will address these challenges by a joint multidisciplinary effort that leverages recent developments in nonlinear optics, integrated photonics, and wideband integrated antennas to enable a compact platform that can provide a vast array of wireless channels with over 1 Tbps data capacity. This project aims to develop a new paradigm for chip-scale Tbps wireless systems. The approach is based on optical dual-microresonators with ultra-high quality factor, where mode-locked femtosecond soliton pulses are generated through the balance between cavity dispersion and Kerr nonlinearity to create arrays of stable optical carriers. Filtering, data modulation, and multiplexing will be accomplished in the optical domain through ring resonators, heterogeneously integrated high-bitrate modulators, and arrayed waveguide gratings. Conversion into the mm-wave frequencies will be achieved by heterodyne detection in ultra-wideband photodetectors, which will be co-designed with integrated antennas to ensure efficient radiation into free space. This effort is expected to advance not only the performance of individual components and circuits, but also the miniaturization and applicability of integrated photonic-electronic technologies to push the state-of-the-art for mm-wave wireless communications. The fact that all key components will be integrated on a single chip will pave the way toward manufacturable large-scale mm-wave photonic integrated circuits with small size, light weight, and low power, which will also benefit other applications in sensing and imaging. The research will allow in-depth studies of the potential benefits, trade-offs, and limits of photonically driven high-frequency technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对无线通信的不断增长的需求产生了对能够向个人用户提供每秒数千兆比特数据速率的极宽带无线电发射机的需求。能够实现这些高数据速率甚至未来更快的每秒兆兆比特(Tbps)数据速率的有希望的方法是使用毫米波(mm波)频谱(30至300 GHz),其容易提供大量带宽。在毫米波频率下工作的蜂窝网络将显著增加所需的基站带宽,但由于这些频率下的大路径损耗和大气吸收,它们也将显著减小每个小区的大小。因此,在每个灯杆上安装基站可能成为保证城市环境中的覆盖的必要条件。这种情况产生了许多技术挑战,因为在这种情况下,基带机架安装硬件设备不能邻近每个天线放置。为了解决这个问题,需要允许密集部署具有Tbps级吞吐量的紧凑型毫米波基站的解决方案,其复杂的通信设备可以远离天线本身放置。与纯电子解决方案相比,光子技术提供了许多实现这种宽带系统的技术优势。然而,传统的光子方法是不可扩展的,并且在级联分立组件时遭受大的插入损耗和大的占用面积。该项目将通过多学科的联合努力来应对这些挑战,利用非线性光学,集成光子学和宽带集成天线的最新发展,实现一个紧凑的平台,可以提供超过1 Tbps数据容量的大量无线信道。 该项目旨在为芯片级Tbps无线系统开发一种新的模式。该方法是基于具有超高品质因数的光学双微谐振腔,其中锁模飞秒孤子脉冲产生通过腔色散和克尔非线性之间的平衡,以创建稳定的光载波阵列。滤波、数据调制和多路复用将通过环形谐振器、异质集成高比特率调制器和阵列波导光栅在光域中完成。将通过超宽带光电探测器中的外差探测实现向毫米波频率的转换,超宽带光电探测器将与集成天线共同设计,以确保有效辐射到自由空间。预计这一努力不仅将提高单个元件和电路的性能,还将提高集成光电技术的小型化和适用性,以推动最先进的毫米波无线通信。所有关键组件都集成在单个芯片上的事实将为可制造的大规模毫米波光子集成电路铺平道路,这些光子集成电路具有小尺寸,轻重量和低功耗,这也将有利于传感和成像方面的其他应用。该研究将允许对光子驱动高频技术的潜在好处、权衡和限制进行深入研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform
  • DOI:
    10.1364/prj.455969
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    7.6
  • 作者:
    Guo, Xiangwen;Shao, Linbo;Beling, Andreas
  • 通讯作者:
    Beling, Andreas
Radio-frequency line-by-line Fourier synthesis based on optical soliton microcombs
基于光孤子微梳的射频逐行傅立叶合成
  • DOI:
    10.1364/prj.450103
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.6
  • 作者:
    Wang, Beichen;Yang, Zijiao;Sun, Shuman;Yi, Xu
  • 通讯作者:
    Yi, Xu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Beling其他文献

Periodic Travelling Wave Photodetectors with Serial and Parallel Optical Feed Based on InP
基于 InP 的串行和并行光馈电周期行波光电探测器
  • DOI:
    10.14279/depositonce-1485
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andreas Beling
  • 通讯作者:
    Andreas Beling
Microcavity Kerr optical frequency division with integrated SiN photonics
基于集成氮化硅光子学的微腔克尔光频分频
  • DOI:
    10.1038/s41566-025-01668-3
  • 发表时间:
    2025-05-23
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Shuman Sun;Mark W. Harrington;Fatemehsadat Tabatabaei;Samin Hanifi;Kaikai Liu;Jiawei Wang;Beichen Wang;Zijiao Yang;Ruxuan Liu;Jesse S. Morgan;Steven M. Bowers;Paul A. Morton;Karl D. Nelson;Andreas Beling;Daniel J. Blumenthal;Xu Yi
  • 通讯作者:
    Xu Yi
Compact Heterogeneously Integrated Optical Phase-Locked Loop for 10 GHz to 40 GHz Optical Frequency Difference Locking
用于 10 GHz 至 40 GHz 光频差锁定的紧凑型异构集成光学锁相环
  • DOI:
    10.1109/jlt.2024.3351090
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Xiaochuan Shen;R. Costanzo;Prerana Singaraju;Travis N. Blalock;Andreas Beling;Steven M. Bowers
  • 通讯作者:
    Steven M. Bowers
Integrated optical frequency division for microwave and mmWave generation
用于微波和毫米波生成的集成光学分频
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Shu;Beichen Wang;Kaikai Liu;M. Harrington;Fatemehsadat Tabatabaei;Ruxuan Liu;Jiawei Wang;Samin Hanifi;J. Morgan;Mandana Jahanbozorgi;Zijiao Yang;Steven M. Bowers;Paul A Morton;Karl D. Nelson;Andreas Beling;Daniel J. Blumenthal;Xu Yi
  • 通讯作者:
    Xu Yi

Andreas Beling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Quantum information processing via photonically connected, modular neutral-atom processors
通过光子连接的模块化中性原子处理器进行量子信息处理
  • 批准号:
    568673-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 130万
  • 项目类别:
    Alliance Grants
Quantum information processing via photonically connected, modular neutral-atom processors
通过光子连接的模块化中性原子处理器进行量子信息处理
  • 批准号:
    568673-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 130万
  • 项目类别:
    Alliance Grants
PICAS2: Photonically Integrated Cold-Atom Source and System
PICAS2:光子集成冷原子源和系统
  • 批准号:
    133983
  • 财政年份:
    2020
  • 资助金额:
    $ 130万
  • 项目类别:
    CR&D Bilateral
Photonically-synthesized Digital-to-Analogue Conversion
光子合成数模转换
  • 批准号:
    EP/R041792/1
  • 财政年份:
    2018
  • 资助金额:
    $ 130万
  • 项目类别:
    Research Grant
Ultra-Wideband Photonically Assisted Analog-to-Digital Converters (PACE) - Phase 2
超宽带光子辅助模数转换器 (PACE) - 第 2 阶段
  • 批准号:
    403188360
  • 财政年份:
    2018
  • 资助金额:
    $ 130万
  • 项目类别:
    Priority Programmes
PICAS: Photonically Integrated Cold Atom Source
PICAS:光子集成冷原子源
  • 批准号:
    132542
  • 财政年份:
    2017
  • 资助金额:
    $ 130万
  • 项目类别:
    Feasibility Studies
EARS: Photonically-Enabled Extremely Wideband Compressive Wireless Spectrum Sensing
EARS:光子超宽带压缩无线频谱传感
  • 批准号:
    1443936
  • 财政年份:
    2014
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
Photonically-triggered SiC-GaN and Superjunction based High-gain, High-temperature, and High-voltage Bipolar Power Transistor
基于光子触发 SiC-GaN 和超结的高增益、高温、高压双极功率晶体管
  • 批准号:
    0823983
  • 财政年份:
    2008
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
Photonically Strongly Coupled Organic/Inorganic Nanocomposites for Light Emitter and Photovoltaic Applications
用于发光体和光伏应用的光子强耦合有机/无机纳米复合材料
  • 批准号:
    0725740
  • 财政年份:
    2007
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了