NCS-FO: Variability and the Global Brain
NCS-FO:变异性和全球大脑
基本信息
- 批准号:2024364
- 负责人:
- 金额:$ 99.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While the brain's computational abilities are in many respects unrivaled, its workings appear to be far noisier than those of almost any engineered computational system. Even in carefully controlled experiments in which the same conditions are presented over multiple trials, neural activity is strikingly variable from one trial to the next. This project aims to resolve the apparent contradiction between the brain's computational proficiency and its apparently high levels of noise. The core hypothesis is that much of the observed neural variability is driven not by noise but by internal brain modes -- that is, by coordinated patterns of activity across the brain. Thus, variability may be a signature of dynamic and uniquely biological computations rather than noisy fluctuations. If this hypothesis is correct, then observation of these global modes should explain choices that subjects make in behavioral tasks, and perturbation of the modes should alter their patterns of choices in systematic ways. To test this hypothesis, the project employs a novel joint experimental and theoretical approach to measure the variability in brain-wide neural activity across scales, to define its relationship to behavior, and to dynamically perturb these modes to impact behavioral performance both within and across individuals. To build a transformative understanding of the link between neural and behavioral variability, the project will use multi-probe Neuropixels technology that enables simultaneous recording at submillisecond resolution from thousands of individual neurons distributed across the brain, coupled with advanced data analytic and dynamical modeling tools to extract activity modes from these data. These analyses will be performed together with behavioral assays that probe multiple aspects of behavioral performance, including engagement, perceptual sensitivity, and vigor. Statistical modeling will then be used to identify the functional role of these modes in regulating behavioral performance, and how their activity drives behavioral differences both across trials and across individuals. Beyond correlative analysis, control theory tools will design patterned optogenetic perturbations to provide direct causal tests of this novel functional role for brain-wide activity modes. If the project succeeds, the result will be a new understanding of the nature of the ongoing fluctuations in brain-wide activity patterns trial by trial and individual by individual in terms of behavior rather than noise -- a key step in deciphering the logic of distributed computation underlying perception and cognition. The project will develop and disseminate novel open data and code to impact research and training nationwide. It will also build a dynamic, team-mentored environment led by investigators from very distinct disciplines -- from neuroscience to applied mathematics to control engineering -- which will prepare both undergraduate and graduate trainees to bridge disciplines and scientific cultures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然大脑的计算能力在许多方面是无与伦比的,但它的工作似乎比几乎任何工程计算系统都要嘈杂得多。即使在多次试验中呈现相同条件的精心控制的实验中,神经活动在一次又一次的试验中也是惊人的不同。该项目旨在解决大脑的计算能力和其明显的高噪音之间的明显矛盾。核心假设是,大部分观察到的神经变异性不是由噪音驱动的,而是由大脑内部模式驱动的--也就是说,由整个大脑的协调活动模式驱动。因此,可变性可能是动态和独特的生物计算的特征,而不是噪声波动。如果这一假设是正确的,那么对这些全局模式的观察应该解释受试者在行为任务中做出的选择,而这些模式的扰动应该以系统的方式改变他们的选择模式。为了验证这一假设,该项目采用了一种新的联合实验和理论方法来衡量整个大脑神经活动在不同尺度上的可变性,定义其与行为的关系,并动态地扰动这些模式,以影响个体内部和跨个体的行为表现。为了建立对神经和行为变异性之间联系的变革性理解,该项目将使用多探头神经像素技术,该技术能够以亚毫秒的分辨率同时记录分布在大脑中的数千个单个神经元,并结合先进的数据分析和动态建模工具从这些数据中提取活动模式。这些分析将与探索行为表现的多个方面的行为分析一起进行,包括参与度、感知敏感度和活力。然后将使用统计建模来确定这些模式在调节行为表现方面的功能作用,以及它们的活动如何在试验和个体之间导致行为差异。除了相关分析,控制理论工具将设计图案化的光遗传扰动,为全脑活动模式的这种新的功能角色提供直接的因果测试。如果该项目成功,结果将是对全脑活动模式持续波动的本质有了新的理解,从行为而不是噪音的角度进行逐一试验和个人试验--这是破译感知和认知背后的分布式计算逻辑的关键一步。该项目将开发和传播新的开放数据和代码,以影响全国的研究和培训。它还将建立一个动态的、团队指导的环境,由来自非常不同学科的研究人员领导--从神经科学到应用数学再到控制工程--这将为本科生和研究生培养学科和科学文化之间的桥梁做好准备。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A scale-dependent measure of system dimensionality
系统维数的尺度相关度量
- DOI:10.1016/j.patter.2022.100
- 发表时间:2022
- 期刊:
- 影响因子:6.5
- 作者:Recanatesi, S.;Bradde, S.;Balasubramanian, V.;Steinmetz, N.;Shea-Brown, E.
- 通讯作者:Shea-Brown, E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Shea-Brown其他文献
Limited range correlations, when modulated by firing rate, can substantially improve neural population coding
- DOI:
10.1186/1471-2202-16-s1-o16 - 发表时间:
2015-12-18 - 期刊:
- 影响因子:2.300
- 作者:
Joel Zylberberg;Jon Cafaro;Maxwell Turner;Fred Rieke;Eric Shea-Brown - 通讯作者:
Eric Shea-Brown
Noise- and stimulus-dependence of the optimal encoding nonlinearities in a simple ON/OFF retinal circuit model
- DOI:
10.1186/1471-2202-15-s1-p47 - 发表时间:
2014-07-21 - 期刊:
- 影响因子:2.300
- 作者:
Braden A W Brinkman;Alison Weber;Fred Rieke;Eric Shea-Brown - 通讯作者:
Eric Shea-Brown
Network Dynamics Governed by Lyapunov Functions: From Memory to Classification
- DOI:
10.1016/j.tins.2020.04.002 - 发表时间:
2020-07-01 - 期刊:
- 影响因子:
- 作者:
Merav Stern;Eric Shea-Brown - 通讯作者:
Eric Shea-Brown
When does recurrent connectivity improve neural population coding?
- DOI:
10.1186/1471-2202-15-s1-p49 - 发表时间:
2014-07-21 - 期刊:
- 影响因子:2.300
- 作者:
Joel Zylberberg;Eric Shea-Brown - 通讯作者:
Eric Shea-Brown
Speed and accuracy in decision making: input correlations and performance
- DOI:
10.1186/1471-2202-13-s1-p44 - 发表时间:
2012-07-16 - 期刊:
- 影响因子:2.300
- 作者:
Nicholas Cain;Eric Shea-Brown - 通讯作者:
Eric Shea-Brown
Eric Shea-Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Shea-Brown', 18)}}的其他基金
Collaborative Research: The Ever-Changing Network: How Changes in Architecture Shape Neural Computations
合作研究:不断变化的网络:架构的变化如何塑造神经计算
- 批准号:
1514743 - 财政年份:2015
- 资助金额:
$ 99.96万 - 项目类别:
Continuing Grant
CRCNS: Collective Coding in Retinal Circuits
CRCNS:视网膜回路的集体编码
- 批准号:
1208027 - 财政年份:2012
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
Collaborative Research: Relating Architecture, Dynamics and Temporal Correlations in Networks of Spiking Neurons
合作研究:尖峰神经元网络中的架构、动力学和时间相关性
- 批准号:
1122106 - 财政年份:2011
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
CAREER: Bridging dynamical and statistical models of neural circuits -- a mechanistic approach to multi-spike synchrony
职业:桥接神经回路的动力学和统计模型——多尖峰同步的机械方法
- 批准号:
1056125 - 财政年份:2011
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
Collaborative research: Correlations in neural dynamics and coding
合作研究:神经动力学和编码的相关性
- 批准号:
0818153 - 财政年份:2008
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
相似国自然基金
影像分型预测HAIC-FO优势肝癌人群及影
像基因组学的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
ATP合酶Fo基团在酸性环境的生理活性及其作用机制
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
烟曲霉F1Fo-ATP合成酶β亚基在侵袭性曲霉病发生中的作用及机制研究
- 批准号:82304035
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白念珠菌F1Fo-ATP合酶中创新药靶的识别与确认研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
GRACE-FO高精度姿态数据处理及其对时变重力场影响的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ATP合酶FO亚基参与调控弓形虫ATP合成的分子机制
- 批准号:32202832
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
顾及GRACE-FO极轨特性的高分辨率Mascon时变重力场建模理论与方法
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
GRACE-FO微波测距系统原始数据处理、噪声分析与评估
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
利用GRACE-FO和中国重力卫星协同探测时变重力场和质量分布变化
- 批准号:42061134010
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
联合GRACE/GRACE-FO和GNSS形变数据反演连续精细的区域地表质量变化
- 批准号:41974015
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
複数のFoトルク発生ユニットを持つATP合成酵素の創出
使用多个 Fo 扭矩产生单元创建 ATP 合酶
- 批准号:
24K01987 - 财政年份:2024
- 资助金额:
$ 99.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NCS-FO: Brain-Informed Goal-Oriented and Bidirectional Deep Emotion Inference
NCS-FO:大脑知情的目标导向双向深度情感推理
- 批准号:
2318984 - 财政年份:2023
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319406 - 财政年份:2023
- 资助金额:
$ 99.96万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319450 - 财政年份:2023
- 资助金额:
$ 99.96万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319451 - 财政年份:2023
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
NCS-FO: Understanding the computations the brain performs during choice
NCS-FO:了解大脑在选择过程中执行的计算
- 批准号:
2319580 - 财政年份:2023
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319449 - 财政年份:2023
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
NCS-FO: Uncovering Dynamics of Neural Activity of Subjective Estimation of Time
NCS-FO:揭示主观时间估计的神经活动动态
- 批准号:
2319518 - 财政年份:2023
- 资助金额:
$ 99.96万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: A model-based approach to probe the role of spontaneous movements during decision-making
合作研究:NCS-FO:一种基于模型的方法,探讨自发运动在决策过程中的作用
- 批准号:
2350329 - 财政年份:2023
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant
NCS-FO: Functional and neural mechanisms of integrating multiple artificial somatosensory feedback signals in prosthesis control
NCS-FO:在假肢控制中集成多个人工体感反馈信号的功能和神经机制
- 批准号:
2327217 - 财政年份:2023
- 资助金额:
$ 99.96万 - 项目类别:
Standard Grant














{{item.name}}会员




