NRI: FND: Intelligent Co-robots for Complex Welding Manufacturing through Learning and Generalization of Welders Capabilities
NRI:FND:通过学习和推广焊工能力实现复杂焊接制造的智能协作机器人
基本信息
- 批准号:2024614
- 负责人:
- 金额:$ 66.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is a dramatic and growing shortage of highly skilled welders, accentuated by the fact that manufacturing complexity and production volumes are rising. As a result, global use of robotic welding is expanding rapidly. However, current welding robots are not as adaptive and creative as human welders in performing complex welding tasks that require sophisticated skills. This award supports fundamental research on advancing the robotic capabilities needed to realize fully robotic automation of complex welding tasks. The research will endow collaborative welding robots with sophisticated welding knowledge, expert intelligence, and an interactive learning capability to enable them to address dynamic welding scenarios. The research results will both enhance the scientific base for robotic control and facilitate the realization of fully automatic, robotic, and intelligent manufacturing. The research involves several disciplines, including welding, process monitoring, data visualization, machine learning, optimization, and robotic control. That multi-disciplinary approach will broaden the participation of students from diverse backgrounds in research, and the knowledge gained will be incorporated in curricula in robotic and intelligent manufacturing. The double-electrode, gas metal arc welding process is complex, requiring intense collaboration between expert welders. As a result, the robotic automation of such a complex welding process requires advances in the scientific base of robotic perception, learning, and control. The project will research advanced methods for the extraction of expert welding-domain knowledge and the quantification and interpretation of that knowledge for use by collaborative robots, thereby equipping collaborative welding robots to perform complex welding tasks. To realize that goal, the research team will: 1) build an immersive virtual reality system with a three-dimensional rendering of the weld pool and arc that can characterize the weld scene and record human operations, 2) use an explainable recurrent convolutional neural network to perform causal analysis of the torch manipulation of human welders to obtain its relationship to dynamic weld pool/arc evolution, 3) generalize the results in terms of human heterogeneity by using transfer learning to extract common latent knowledge from different human welders, and 4) develop an interactive learning module that allows collaborative robots to be supervised by on-site human welders through the reinforcement learning-based perception of language instructions and human gestures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高技能焊工的短缺日益严重,制造复杂性和产量不断上升的事实加剧了这一问题。因此,全球机器人焊接的使用正在迅速扩大。 然而,当前的焊接机器人在执行需要复杂技能的复杂焊接任务时不像人类焊工那样具有适应性和创造性。该奖项支持基础研究,以提高实现复杂焊接任务的完全机器人自动化所需的机器人能力。该研究将赋予协作焊接机器人复杂的焊接知识,专家智能和交互式学习能力,使他们能够解决动态焊接场景。研究成果将为机器人控制奠定科学基础,促进全自动、机器人和智能制造的实现。该研究涉及多个学科,包括焊接,过程监控,数据可视化,机器学习,优化和机器人控制。这种多学科方法将扩大来自不同背景的学生对研究的参与,所获得的知识将纳入机器人和智能制造课程。 双电极气体保护金属极电弧焊工艺复杂,需要专业焊工之间的密切合作。 因此,这种复杂焊接过程的机器人自动化需要机器人感知、学习和控制的科学基础的进步。该项目将研究先进的方法,用于提取专家焊接领域知识,并量化和解释该知识,供协作机器人使用,从而使协作焊接机器人能够执行复杂的焊接任务。为了实现这一目标,研究小组将:1)构建具有焊接熔池和电弧的三维渲染的沉浸式虚拟现实系统,其可以表征焊接场景并记录人类操作,2)使用可解释的递归卷积神经网络来执行人类焊工的焊炬操纵的因果分析,以获得其与动态焊接熔池/电弧演变的关系,3)通过使用迁移学习来从不同的人类焊工提取共同的潜在知识,以及4)开发交互式学习模块,其允许协作机器人通过强化学习由现场人类焊工监督-该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-driven process characterization and adaptive control in robotic arc welding
- DOI:10.1016/j.cirp.2022.04.046
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Peng Wang;J. Kershaw;Matthew Russell;Jianjing Zhang;Yuming Zhang;R. X. Gao
- 通讯作者:Peng Wang;J. Kershaw;Matthew Russell;Jianjing Zhang;Yuming Zhang;R. X. Gao
Do We Need a New Foundation to Use Deep Learning to Monitor Weld Penetration?
- DOI:10.1109/lra.2023.3270038
- 发表时间:2023-06
- 期刊:
- 影响因子:5.2
- 作者:Edison Mucllari;Rui Yu;Yue Cao;Qiang Ye;Yuming Zhang
- 通讯作者:Edison Mucllari;Rui Yu;Yue Cao;Qiang Ye;Yuming Zhang
Hybrid machine learning-enabled adaptive welding speed control
- DOI:10.1016/j.jmapro.2021.09.023
- 发表时间:2021-11
- 期刊:
- 影响因子:6.2
- 作者:J. Kershaw;Rui Yu;Yuming Zhang;Peng Wang
- 通讯作者:J. Kershaw;Rui Yu;Yuming Zhang;Peng Wang
How to Accurately Monitor the Weld Penetration From Dynamic Weld Pool Serial Images Using CNN-LSTM Deep Learning Model?
- DOI:10.1109/lra.2022.3173659
- 发表时间:2022-07
- 期刊:
- 影响因子:5.2
- 作者:Rui Yu;J. Kershaw;Peng Wang;Yuming Zhang
- 通讯作者:Rui Yu;J. Kershaw;Peng Wang;Yuming Zhang
Monitoring of Backside Weld Bead Width from High Dynamic Range Images Using CNN Network
- DOI:10.1109/codit55151.2022.9804041
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Rui Yu;J. Kershaw;Peng Wang;Yuming Zhang
- 通讯作者:Rui Yu;J. Kershaw;Peng Wang;Yuming Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YuMing Zhang其他文献
Editorial: Advances in intelligent welding manufacturing
- DOI:
10.1007/s40194-025-01992-w - 发表时间:
2025-02-21 - 期刊:
- 影响因子:2.500
- 作者:
YuMing Zhang;Stephan Egerland;Zengxi Stephen Pan - 通讯作者:
Zengxi Stephen Pan
Improved empirical DC I–V model for 4H-SiC MESFETs
- DOI:
10.1007/s11432-008-0037-x - 发表时间:
2008-06-18 - 期刊:
- 影响因子:7.600
- 作者:
QuanJun Cao;YiMen Zhang;YuMing Zhang;HongLiang Lv;YueHu Wang;XiaoYan Tang;Hui Guo - 通讯作者:
Hui Guo
Human-robot collaborative assembly and welding: A review and analysis of the state of the art
人机协作装配与焊接:现状的综述与分析
- DOI:
10.1016/j.jmapro.2024.09.044 - 发表时间:
2024-12-12 - 期刊:
- 影响因子:6.800
- 作者:
Yue Cao;Quan Zhou;Wei Yuan;Qiang Ye;Dan Popa;YuMing Zhang - 通讯作者:
YuMing Zhang
Control of DE-GMAW through human–robot collaboration
- DOI:
10.1007/s40194-025-01954-2 - 发表时间:
2025-02-05 - 期刊:
- 影响因子:2.500
- 作者:
Yue Cao;YuMing Zhang - 通讯作者:
YuMing Zhang
Optimization for LED arrays to achieve uniform near-field illumination
优化 LED 阵列以实现均匀的近场照明
- DOI:
10.1117/12.865937 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Hu Zhang;Yi Li;Wei Zhang;Yize Huang;Haifang Wang;Xiaojing Yu;Huiqun Zhu;Sheng Zhou;R. Sun;YuMing Zhang - 通讯作者:
YuMing Zhang
YuMing Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YuMing Zhang', 18)}}的其他基金
Machine-Human Cooperative Control of Welding Process
焊接过程的人机协同控制
- 批准号:
0927707 - 财政年份:2009
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant
Control of Metal Transfer at Given Arc Variables
给定电弧变量下金属转移的控制
- 批准号:
0825956 - 财政年份:2008
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant
Measurement and Control of Dynamic Weld Pool Surface in Gas Metal Arc Welding
熔化极气体保护焊动态熔池表面的测量与控制
- 批准号:
0726123 - 财政年份:2007
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant
Sensors: Measurement of Dynamic Weld Pool Surface
传感器:动态熔池表面的测量
- 批准号:
0527889 - 财政年份:2005
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant
Double-Electrode Gas Metal Arc Welding
双电极熔化极气体保护焊
- 批准号:
0355324 - 财政年份:2004
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant
Control of Gas Tungsten Arc Weld Pool Surface
钨极气体保护焊熔池表面的控制
- 批准号:
0114982 - 财政年份:2001
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant
相似国自然基金
Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
- 批准号:31670112
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
- 批准号:
MR/Y004000/1 - 财政年份:2024
- 资助金额:
$ 66.55万 - 项目类别:
Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2348839 - 财政年份:2023
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
- 批准号:
2311967 - 财政年份:2022
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024882 - 财政年份:2021
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024646 - 财政年份:2021
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024792 - 财政年份:2021
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024670 - 财政年份:2021
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant
NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
- 批准号:
2024409 - 财政年份:2020
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
- 批准号:
2024435 - 财政年份:2020
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
- 批准号:
2024615 - 财政年份:2020
- 资助金额:
$ 66.55万 - 项目类别:
Standard Grant