Collaborative Research: Learning for Faster Computations to Enhance Efficiency and Security of Power System Operations

协作研究:学习更快的计算以提高电力系统运行的效率和安全性

基本信息

  • 批准号:
    2025152
  • 负责人:
  • 金额:
    $ 24.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The electric grid is a complex critical infrastructure system that underpins all economic and social activities in the US. It is thus of utmost importance to maintain its efficient, reliable and secure operation at all times. The system, however, is undergoing an unprecedented period of transformation with rapid growths in renewable energy and electric vehicles, as well as increasing concerns of cyber security. Consequently, not only there is a higher requirement for efficient and secure operation of the grid, but also achieving it becomes much more challenging. The issue is especially acute from a computational perspective, as problems of much greater complexity need to be solved more frequently. As such, conventional approaches for solving secure power system operation problems face major and pressing challenges in maintaining their efficacy in the rapidly evolving power grids. To overcome these challenges, this project will develop novel machine-learning-based methods to greatly accelerate solving key and large-scale secure power system operation problems. Notably, the developed methods will integrate data-driven methods with the physical models of power systems. The impact of the project extends to machine learning algorithm design in all engineering systems where knowledge from physical system models and conventional wisdom in algorithm design can be incorporated. The developed algorithms will lead to greatly enhanced efficiency, reliability and security of power systems in the presence of high penetration of renewable energy and without the need of building more transmission lines or procuring much higher reserve capacity, resulting in tremendous economic savings for consumers. The project will also contribute to the much-demanded educational needs in the industry by training the next generation workforce to master interdisciplinary expertise of machine learning and power systems. The PIs are committed to promote diversity in research and education through the project by engaging students of minorities and from under-privileged backgrounds. This project will develop new machine learning algorithms, both leveraging and integrated with existing computational tools, to greatly improve the computational efficiency of solving challenging power system operation problems. We accomplish this by designing algorithms that use data to replace some of the existing heuristics based on human experience. We use a bottom-up approach by carefully formulating the problems to determine the best interface between the physical system and machine learning. This allows us to design algorithms that are aware of the physics of the problems and complement existing tools in the field. Specifically, we pursue three research thrusts: i) solving for optimal generator dispatch levels by introducing a data-driven component to the existing algorithms; ii) enabling fast identification and quantification of problematic contingencies using reinforcement learning; and iii) finding the most secure and efficient generation unit commitment schedule utilizing the results from the previous thrusts. These algorithms can be directly integrated into current solvers and have the potential of providing orders of magnitude speedup over existing methods. As such, this project offers a) new machine learning paradigms and algorithms, b) innovative ways of integrating machine learning methods with physical model-based optimization algorithms, and c) potentially transformative tools that solve key power system operation problems in a holistic framework with much faster speeds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电网是一个复杂的关键基础设施系统,支撑着美国的所有经济和社会活动。因此,始终保持其高效、可靠和安全的运作至关重要。然而,随着可再生能源和电动汽车的快速增长,以及对网络安全的日益担忧,该系统正在经历前所未有的转型时期。因此,不仅对电网的高效和安全运行提出了更高的要求,而且实现它变得更具挑战性。从计算的角度来看,这个问题尤其严重,因为需要更频繁地解决更复杂的问题。因此,用于解决安全电力系统操作问题的常规方法在快速发展的电网中维持其功效方面面临重大且紧迫的挑战。为了克服这些挑战,该项目将开发新的基于机器学习的方法,以大大加快解决关键和大规模安全电力系统运行问题。值得注意的是,开发的方法将数据驱动的方法与电力系统的物理模型相结合。该项目的影响扩展到所有工程系统中的机器学习算法设计,其中可以结合物理系统模型的知识和算法设计中的传统智慧。开发的算法将大大提高电力系统的效率,可靠性和安全性,在可再生能源的高渗透率的情况下,不需要建造更多的输电线路或获得更高的备用容量,为消费者带来巨大的经济节省。该项目还将通过培训下一代劳动力来掌握机器学习和电力系统的跨学科专业知识,为行业迫切需要的教育需求做出贡献。研究所致力于通过该项目促进研究和教育的多样性,让少数民族和贫困背景的学生参与进来。该项目将开发新的机器学习算法,利用现有的计算工具并与之集成,以大大提高解决具有挑战性的电力系统运行问题的计算效率。我们通过设计算法来实现这一点,这些算法使用数据来取代一些基于人类经验的现有算法。我们使用自下而上的方法,通过仔细制定问题来确定物理系统和机器学习之间的最佳接口。这使我们能够设计出了解问题物理特性的算法,并补充该领域现有的工具。具体来说,我们追求三个研究方向:i)通过将数据驱动组件引入现有算法来解决最佳发电机调度水平; ii)使用强化学习快速识别和量化有问题的突发事件; iii)利用以前的结果找到最安全和最有效的发电机组承诺计划。这些算法可以直接集成到当前的求解器,并有可能提供数量级的加速比现有的方法。因此,该项目提供了a)新的机器学习范例和算法,B)将机器学习方法与基于物理模型的优化算法相结合的创新方法,以及c)潜在的变革性工具,以更快的速度在整体框架内解决关键的电力系统运行问题。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识产权进行评估来支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DeepPursuit: Uniting Classical Wisdom and Deep RL for Sparse Recovery
Learning-based Real-time Outage Location Identification in Power Distribution Systems with Sparse Sensors
稀疏传感器配电系统中基于学习的实时断电位置识别
  • DOI:
    10.1109/smartgridcomm57358.2023.10333931
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pu, Kang;Xu, Ce;Zhao, Yue
  • 通讯作者:
    Zhao, Yue
Offline Reinforcement Learning for Price-Based Demand Response Program Design
基于价格的需求响应方案设计的离线强化学习
  • DOI:
    10.1109/ciss56502.2023.10089681
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xu, Ce;Liu, Bo;Zhao, Yue
  • 通讯作者:
    Zhao, Yue
Physics-Aware Fast Learning and Inference for Predicting Active Set of DC-OPF
用于预测 DC-OPF 活动集的物理感知快速学习和推理
Machine-Learning-Based Online Transient Analysis via Iterative Computation of Generator Dynamics
通过发电机动力学迭代计算进行基于机器学习的在线瞬态分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yue Zhao其他文献

A multiplexed immunocapture liquid chromatography tandem mass spectrometry assay for the simultaneous measurement of myostatin and GDF-11 in rat serum using an automated sample preparation platform.
多重免疫捕获液相色谱串联质谱分析,使用自动化样品制备平台同时测量大鼠血清中的肌生长抑制素和 GDF-11。
  • DOI:
    10.1016/j.aca.2017.04.028
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Yue Zhao;Guowen Liu;F. Zambito;Yan J. Zhang;Binodh S Desilva;A. Kozhich;Jim X. Shen
  • 通讯作者:
    Jim X. Shen
A polynomial-time method to find the sparsest unobservable attacks in power networks
寻找电力网络中最稀疏不可观测攻击的多项式时间方法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yue Zhao;A. Goldsmith;H. Poor
  • 通讯作者:
    H. Poor
Cadmium accumulation and antioxidative defenses in leaves of Triticum aestivum L . and Zea mays L .
  • DOI:
    10.5897/ajb10.1230
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yue Zhao
  • 通讯作者:
    Yue Zhao
Au@Rh core-shell nanowires for hydrazine electrooxidation
用于肼电氧化的Au@Rh核壳纳米线
  • DOI:
    10.1016/j.apcatb.2020.119269
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    22.1
  • 作者:
    Qi Xue;Hao Huang;Jing-Yi Zhu;Yue Zhao;Fumin Li;Pei Chen;Yu Chen
  • 通讯作者:
    Yu Chen
Self-Supported FeP-CoMoP Hierarchical Nanostructures for Efficient Hydrogen Evolution
用于高效析氢的自支撑 FeP-CoMoP 分层纳米结构
  • DOI:
    10.1002/asia.202000278
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qin Wang;Zhiying Wang;Yue Zhao;Fumin Li;Ling Xu;Xiaoming Wang;Huan Jiao;Yu Chen
  • 通讯作者:
    Yu Chen

Yue Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yue Zhao', 18)}}的其他基金

CAREER: A Dual-Core Control Framework for the Next-Generation SiC Motor Drives
职业生涯:下一代 SiC 电机驱动器的双核控制框架
  • 批准号:
    1751506
  • 财政年份:
    2018
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Applications of the Discharging Method in Graph Theory
放电方法在图论中的应用
  • 批准号:
    0096160
  • 财政年份:
    2000
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
  • 批准号:
    2330154
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了