RoL:FELS:RAISE: Design principles of evolved transportation networks in leaf veins

RoL:FELS:RAISE:叶脉进化运输网络的设计原理

基本信息

  • 批准号:
    2025282
  • 负责人:
  • 金额:
    $ 97.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-21 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Many biological systems contain spatial networks that transport resources. Examples include the branches of trees and the circulatory systems of animals. These networks vary widely in their form. Some only branch, while others form loops. Some have multiple levels of hierarchy, while others do not. This variation may reflect evolved solutions for solving diverse environmental and structural challenges. This project will study key network functions in plants, including transport efficiency, resistance to damage, and mechanical strength. There is little theory linking network form to these functions, or for predicting tradeoffs among these functions. Moreover, very few networks have been fully characterized for structure or function due to the difficulty of collecting the data and describing network architecture. Better understanding the rules underlying network architecture will provide insights into the evolution of diverse organismal forms. The principles identified in this research could one day guide the engineering of artificial networks such as solar cells or synthetic organs that could benefit society. The project will also support career development undergraduate researchers via a comprehensive mentoring program aimed at inclusion of underrepresented minority students.This project will use leaf venation networks are a model empirical system. Leaves are central to plant performance via their roles in carbon gain and water loss, processes mediated by resource transport through their venation networks. These networks have high diversity of form and function and are tractable to phenotyping and functional characterization. This project will 1) quantify network architecture in a phylogenetically broad set of 500 species from temperate forests, desert, and lowland/montane tropical forests, 2) determine how network architecture and functions/costs are linked, 3) develop and test theories for these functions/costs of networks based on multi-scale network statistics, and 4) identify macro-evolutionary drivers of network architecture. Network functionality will be measured in the field with ecophysiology methods. Machine learning methods will be used to extract network architecture from images. The project also will support interdisciplinary training for one postdoctoral researcher and two graduate students, who will gain international fieldwork and collaboration experience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多生物系统包含运输资源的空间网络。例子包括树枝和动物的循环系统。这些网络在形式上差异很大。一些只有分支,而另一些则形成环路。一些企业有多个层次结构,而另一些企业则没有。这种差异可能反映了为解决各种环境和结构挑战而演变的解决方案。这个项目将研究植物中的关键网络功能,包括运输效率、抗损伤和机械强度。几乎没有理论将网络形式与这些功能联系起来,或者预测这些功能之间的权衡。此外,由于收集数据和描述网络体系结构的困难,很少有网络在结构或功能上得到完全表征。更好地理解网络体系结构背后的规则将为各种生物形式的进化提供洞察力。这项研究中确定的原则有朝一日可能会指导太阳能电池或合成器官等人工网络的工程,从而造福社会。该项目还将通过一个全面的指导计划来支持本科研究人员的职业发展,该计划旨在纳入未被充分代表的少数族裔学生。该项目将使用叶脉网络是一个模型经验系统。叶片通过其在碳获得和水分损失中的作用,是植物表现的中心,这一过程是由其脉序网络中的资源运输所介导的。这些网络具有高度的形式和功能的多样性,并且易于表型和功能表征。该项目将1)量化来自温带森林、沙漠和低地/山地热带森林的500个物种的系统发育广泛集合中的网络结构;2)确定网络结构和功能/成本是如何联系在一起的;3)根据多尺度网络统计数据开发和测试这些网络功能/成本的理论;以及4)确定网络结构的宏观进化驱动因素。网络功能将在现场使用生态生理学方法进行测量。机器学习方法将被用来从图像中提取网络结构。该项目还将支持对一名博士后研究员和两名研究生的跨学科培训,他们将获得国际实地工作和合作经验。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Carrying the Moral Burden of Safe Fieldwork
承担安全实地工作的道德负担
Gas exchange analysers exhibit large measurement error driven by internal thermal gradients
  • DOI:
    10.1111/nph.18347
  • 发表时间:
    2022-07-30
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Garen, Josef C.;Branch, Haley A.;Michaletz, Sean T.
  • 通讯作者:
    Michaletz, Sean T.
Automated and accurate segmentation of leaf venation networks via deep learning
  • DOI:
    10.1111/nph.16923
  • 发表时间:
    2020-10-10
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Xu, Hao;Blonder, Benjamin;Fricker, Mark
  • 通讯作者:
    Fricker, Mark
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Blonder其他文献

Benjamin Blonder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Blonder', 18)}}的其他基金

Collaborative Research: Alternative leaf water use strategies in hot environments
合作研究:炎热环境下的替代叶水利用策略
  • 批准号:
    2140428
  • 财政年份:
    2022
  • 资助金额:
    $ 97.55万
  • 项目类别:
    Standard Grant
RoL:FELS:RAISE: Design principles of evolved transportation networks in leaf veins
RoL:FELS:RAISE:叶脉进化运输网络的设计原理
  • 批准号:
    1840209
  • 财政年份:
    2019
  • 资助金额:
    $ 97.55万
  • 项目类别:
    Continuing Grant
Towards a more predictive community ecology: integrating functional traits and disequilibrium
走向更具预测性的群落生态:整合功能特征和不平衡
  • 批准号:
    NE/M019160/1
  • 财政年份:
    2015
  • 资助金额:
    $ 97.55万
  • 项目类别:
    Fellowship

相似海外基金

RoL: FELS: EAGER Rules for cellular adaptation to the mechanical properties of their environment
RoL:FELS:细胞适应环境机械特性的 EAGER 规则
  • 批准号:
    2054796
  • 财政年份:
    2020
  • 资助金额:
    $ 97.55万
  • 项目类别:
    Standard Grant
RoL: FELS: RAISE: A Phylogenomically-Based Bioinspired Robotic Model Approach to Addressing the Evolution of Terrestrial Locomotion
RoL:FELS:RAISE:一种基于系统发育学的仿生机器人模型方法来解决陆地运动的进化问题
  • 批准号:
    1839915
  • 财政年份:
    2019
  • 资助金额:
    $ 97.55万
  • 项目类别:
    Standard Grant
RoL: FELS: RAISE: Rules That Govern Seasonal Migration of Birds Through the Air
RoL:FELS:RAISE:管理鸟类空中季节性迁徙的规则
  • 批准号:
    1840230
  • 财政年份:
    2019
  • 资助金额:
    $ 97.55万
  • 项目类别:
    Standard Grant
RoL: FELS Conference: A Fading Cryosphere Shifting Temperature and Stoichiometry in Mountain Lakes and Streams: A US-China Cooperative Workshop
RoL:FELS 会议:消失的冰冻圈改变高山湖泊和溪流的温度和化学计量:中美合作研讨会
  • 批准号:
    1834494
  • 财政年份:
    2018
  • 资助金额:
    $ 97.55万
  • 项目类别:
    Standard Grant
RoL: FELS: EAGER: Landscape Phenomics: Predicting vulnerability to climate variation by linking environmental heterogeneity to genetic and phenotypic variation
RoL:FELS:EAGER:景观表型组学:通过将环境异质性与遗传和表型变异联系起来预测气候变化的脆弱性
  • 批准号:
    1838282
  • 财政年份:
    2018
  • 资助金额:
    $ 97.55万
  • 项目类别:
    Standard Grant
RoL: FELS: EAGER: Mining for ancient toolkits: Emergence of planar structures across kingdoms
RoL:FELS:渴望:古代工具包的开采:各个王国平面结构的出现
  • 批准号:
    1838291
  • 财政年份:
    2018
  • 资助金额:
    $ 97.55万
  • 项目类别:
    Standard Grant
RoL: FELS: EAGER: Genetic Constraints on the Increase of Organismal Complexity Over Time
RoL:FELS:EAGER:随着时间的推移,生物体复杂性增加的遗传限制
  • 批准号:
    1838307
  • 财政年份:
    2018
  • 资助金额:
    $ 97.55万
  • 项目类别:
    Standard Grant
RoL: FELS: EAGER: Metabolic asymmetry: An energetic rule for linking biology across scales
RoL:FELS:EAGER:代谢不对称:跨尺度联系生物学的能量规则
  • 批准号:
    1838346
  • 财政年份:
    2018
  • 资助金额:
    $ 97.55万
  • 项目类别:
    Standard Grant
Collaborative Research: RoL: FELS: EAGER: Determining the Interplay of Long- and Short-Range Interactions in Emergent Biological Collective Behavior
合作研究:RoL:FELS:EAGER:确定新兴生物集体行为中长程和短程相互作用的相互作用
  • 批准号:
    1838341
  • 财政年份:
    2018
  • 资助金额:
    $ 97.55万
  • 项目类别:
    Standard Grant
RoL: FELS: EAGER: Collaborative Research: Exceptions that Test the Rules - Establishing the Feasibility of Avian Feather Muscles as a Study System for Neuromotor Control
RoL:FELS:EAGER:协作研究:测试规则的例外 - 建立鸟类羽毛肌肉作为神经运动控制研究系统的可行性
  • 批准号:
    1838688
  • 财政年份:
    2018
  • 资助金额:
    $ 97.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了