FW-HTF-RM: Collaborative Research: Assistive Intelligence for Cooperative Robot and Inspector Survey of Infrastructure Systems (AI-CRISIS)

FW-HTF-RM:协作研究:协作机器人辅助智能和基础设施系统检查员调查 (AI-CRISIS)

基本信息

  • 批准号:
    2025929
  • 负责人:
  • 金额:
    $ 40.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The U.S. civil infrastructure faces the prospect of rapid future deterioration. For example, 39% of the over 600,000 highway bridges in the U.S. have exceeded their design life of 50 years. To ensure the safety and welfare of citizens, state Departments of Transportation are required to inspect bridges every two years. To make inspection and reporting objective and consistent, robots such as unmanned aerial vehicles have recently been introduced to perform autonomous surveys of bridges. These robots, equipped with cameras, will rapidly provide a large set of survey data that can be used to aid inspectors in assessing the condition of bridges. To transform these multidisciplinary topics into a new integrated bridge inspection capability, this multi-university team will develop and implement a cooperative robot-inspector system with assistive intelligence (AI) in order to make the future bridge inspection significantly faster, cheaper, safer, and more consistent. A robotic platform equipped with infrared cameras and a central processing unit with intelligent algorithms will operate in both flying and crawling modes, travel in proximity to various parts/elements of a bridge, and collect high-fidelity images of the entire bridge. Inspectors will be instrumented and monitored with a suite of wearable sensors to enable optimal robot-inspector cooperation during each bridge inspection. AI algorithms will be developed in modules to analyze the big data from human sensors and cameras in support of the pre-inspection workforce training, during-inspection element defect detection, and post-inspection condition evaluation of bridges. The robot-inspector-AI system will be integrated and validated at six bridge sites in collaboration with stakeholders.This multidisciplinary project aims to explore and develop the scientific knowledge and underling methods of AI for a cooperative inspector-robot survey of bridges. The scope of work includes: (1) to develop an optimal screening-to-probing inspection strategy using fast and accurate detection of both surface and internal defects in reinforced concrete slabs (representative bridge elements) from active thermal and visible light imaging; (2) to create a causal model of inspectors’ task performance to support an optimal job design, effective training, and onsite operation; (3) to develop adaptive AI algorithms with human inspectors in the loop for a rapid adaptation to future work contexts, and efficient and reliable data analyses; and (4) to enable a spatial correlation among the elements of an entire bridge with a maximum use of domain expertise, and thus improve the effectiveness and applicability of adaptive AI. The methods and technologies developed in this study will be transferred into the hands of stakeholders, researchers, policy makers, and end users (bridge inspectors) through publications, presentations, field demonstrations, and training. In particular, the world’s first bridge benchmark dataset of videos, labeled objects, and metadata established from real-world bridges, upon approval by stakeholders, will be shared with the international community via an AI-enabled bridge inspection competition.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国的民用基础设施面临着未来迅速恶化的前景。例如,在美国60多万座公路桥梁中,39%的桥梁已经超过了50年的设计寿命。为了确保公民的安全和福利,国家交通部门被要求每两年对桥梁进行一次检查。为了使检查和报告具有客观性和一致性,最近引入了无人驾驶飞行器等机器人来对桥梁进行自主测量。这些配备了摄像头的机器人将迅速提供大量调查数据,可用于帮助检查人员评估桥梁状况。为了将这些多学科的主题转化为新的综合桥梁检测能力,这个多大学团队将开发和实施一个具有辅助智能(AI)的协作机器人-检查员系统,以使未来的桥梁检测显著更快、更便宜、更安全、更一致。一个配备了红外摄像头和带有智能算法的中央处理器的机器人平台将在飞行和爬行模式下运行,在桥梁的各个部件/部件附近移动,并收集整个桥梁的高保真图像。检查员将使用一套可穿戴传感器进行仪表和监控,以便在每次桥梁检查期间实现机器人与检查员的最佳合作。AI算法将以模块的形式开发,以分析来自人类传感器和摄像头的大数据,以支持检测前的劳动力培训、检测中的构件缺陷检测和检测后的桥梁状况评估。机器人-检查员-人工智能系统将与利益相关者合作,在六个桥梁站点进行集成和验证。这个多学科项目旨在探索和发展人工智能的科学知识和底层方法,以实现桥梁检查员-机器人的合作调查。工作范围包括:(1)利用主动热成像和可见光成像,快速准确地检测钢筋混凝土板(有代表性的桥梁构件)的表面和内部缺陷,从而制定最佳的筛选-探测检测策略;(2)创建检查员任务表现的因果模型,以支持最佳工作设计、有效的培训和现场操作;(3)开发具有人类检查员参与的自适应人工智能算法,以便快速适应未来的工作环境,并进行高效和可靠的数据分析;(4)最大限度地利用领域专业知识,实现整个桥梁元素之间的空间相关性,从而提高自适应人工智能的有效性和适用性。本研究中开发的方法和技术将通过出版物、演示、现场演示和培训转移到利益相关者、研究人员、政策制定者和最终用户(桥梁检查员)手中。特别是,世界上第一个桥梁基准数据集,包括视频、标记对象和从现实世界桥梁建立的元数据,经利益相关者批准后,将通过人工智能支持的桥梁检查比赛与国际社会共享。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global Memory and Local Continuity for Video Object Detection
  • DOI:
    10.1109/tmm.2022.3164253
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Liang Han;Zhaozheng Yin
  • 通讯作者:
    Liang Han;Zhaozheng Yin
A Dynamic Spatial-Temporal Attention Network for Early Anticipation of Traffic Accidents
An Attention-Guided Multistream Feature Fusion Network for Early Localization of Risky Traffic Agents in Driving Videos
  • DOI:
    10.1109/tiv.2023.3275543
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    8.2
  • 作者:
    Muhammad Monjurul Karim;Zhaozheng Yin;Ruwen Qin
  • 通讯作者:
    Muhammad Monjurul Karim;Zhaozheng Yin;Ruwen Qin
A semi-supervised self-training method to develop assistive intelligence for segmenting multiclass bridge elements from inspection videos
  • DOI:
    10.1177/14759217211010422
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Muhammad Monjurul Karim;Ruwen Qin;Genda Chen;Zhaozheng Yin
  • 通讯作者:
    Muhammad Monjurul Karim;Ruwen Qin;Genda Chen;Zhaozheng Yin
Collaborative Foreground, Background, and Action Modeling Network for Weakly Supervised Temporal Action Localization
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhaozheng Yin其他文献

Semi-supervised Domain Adaptive Medical Image Segmentation through Consistency Regularized Disentangled Contrastive Learning
通过一致性正则化解缠对比学习进行半监督领域自适应医学图像分割
Spatial Attention Mechanism for Weakly Supervised Fire and Traffic Accident Scene Classification
弱监督火灾和交通事故场景分类的空间注意力机制
A gaze-driven manufacturing assembly assistant system with integrated step recognition, repetition analysis, and real-time feedback
一个具有集成步骤识别、重复分析和实时反馈功能的基于注视驱动的制造装配辅助系统
Co-restoring Multimodal Microscopy Images
共同恢复多模态显微图像
Freeway Travel Time Estimation using Existing Fixed Traffic Sensors – A ComputerVision-Based Vehicle Matching Approach Report # MATC-MS & T : 296 Final Report
使用现有固定交通传感器进行高速公路旅行时间估计 - 基于计算机视觉的车辆匹配方法报告 MATC-MS & T:296 最终报告
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaozheng Yin
  • 通讯作者:
    Zhaozheng Yin

Zhaozheng Yin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhaozheng Yin', 18)}}的其他基金

Collaborative Research: An Integrated, Proactive, and Ubiquitous Prosthetic Care Robot for People with Lower Limb Amputation: Sensing, Device Designing, and Control
合作研究:针对下肢截肢患者的集成、主动、无处不在的假肢护理机器人:传感、设备设计和控制
  • 批准号:
    2246673
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Manufacturing USA: Intelligent Human-Robot Collaboration for Smart Factory
NRI:INT:COLLAB:美国制造:智能工厂的智能人机协作
  • 批准号:
    1954548
  • 财政年份:
    2019
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
CAREER: Microscopy Image Analysis to Aid Biological Discovery: Optics, Algorithms, and Community
职业:显微镜图像分析有助于生物发现:光学、算法和社区
  • 批准号:
    2019967
  • 财政年份:
    2019
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Manufacturing USA: Intelligent Human-Robot Collaboration for Smart Factory
NRI:INT:COLLAB:美国制造:智能工厂的智能人机协作
  • 批准号:
    1830479
  • 财政年份:
    2018
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
I-Corps: Automated Attendance Check by Using Smartphone Cameras
I-Corps:使用智能手机摄像头自动考勤
  • 批准号:
    1521289
  • 财政年份:
    2015
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
CAREER: Microscopy Image Analysis to Aid Biological Discovery: Optics, Algorithms, and Community
职业:显微镜图像分析有助于生物发现:光学、算法和社区
  • 批准号:
    1351049
  • 财政年份:
    2014
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant

相似国自然基金

转HTFα对脊髓继发性损伤和微循环重建的影响
  • 批准号:
    39970755
  • 批准年份:
    1999
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326160
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
  • 批准号:
    2326198
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326159
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RM]: The Future of Nurse Training: Robotic Teaching Assistant Systems for Nursing Instructors
协作研究 [FW-HTF-RM]:护士培训的未来:护理讲师的机器人助教系统
  • 批准号:
    2326391
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
FW-HTF-RM: Addressing and Amplifying the Skills of the Future Hispanic and Latino Construction Workforce Using BIM and Augmented Reality
FW-HTF-RM:使用 BIM 和增强现实解决和增强未来西班牙裔和拉丁裔建筑劳动力的技能
  • 批准号:
    2326134
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: AI-Assisted Programming: Equipping Social and Natural Scientists for the Future of Research
合作研究:FW-HTF-RM:人工智能辅助编程:为社会和自然科学家的未来研究做好准备
  • 批准号:
    2326173
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RM]: The Future of Nurse Training: Robotic Teaching Assistant Systems for Nursing Instructors
协作研究 [FW-HTF-RM]:护士培训的未来:护理讲师的机器人助教系统
  • 批准号:
    2326390
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
FW-HTF-RM: Bridging AI Inequality in Digitally-Mediated Gig Work
FW-HTF-RM:弥合数字化零工工作中的人工智能不平等
  • 批准号:
    2326378
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
FW-HTF-RM: Collaborative Research: Assistive Intelligence for Cooperative Robot and Inspector Survey of Infrastructure Systems (AI-CRISIS)
FW-HTF-RM:协作研究:协作机器人辅助智能和基础设施系统检查员调查 (AI-CRISIS)
  • 批准号:
    2337277
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: AI-Assisted Programming: Equipping Social and Natural Scientists for the Future of Research
合作研究:FW-HTF-RM:人工智能辅助编程:为社会和自然科学家的未来研究做好准备
  • 批准号:
    2326174
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了