FW-HTF-RM: Collaborative Research: Supervise It! Optimizing Intelligent Robot Integration Through Feedback to Workers and Supervisors

FW-HTF-RM:协作研究:监督!

基本信息

项目摘要

Limitations in achievable performance and programmability are obstacles to realizing productivity gains from the full automation of manufacturing operations requiring a large variety of low-volume tasks. The use of collaborative robots to assist human workers is a promising approach to overcoming these obstacles, without displacing human jobs. Current efforts in this area focus on the worker-robot partnership and overlook the critical role of the supervisor in managing workloads and allocating tasks. By considering the larger context of supervised work teams, this Future of Work at the Human-Technology Frontier (FW-HTF) research aims to enhance productivity and improve worker quality of life by increasing the effectiveness of workers operating in partnership with robots. It provides a framework for analyzing readiness, assessing adoption, and evaluating performance of collaborative robotics in industrial settings. Partnerships and interactions with companies in the Southeastern USA will promote realistic research efforts that translate to practice, benefitting small-to-medium manufacturing companies in the USA. Efforts and findings will be promoted to the public to attract the next generation of workers and researchers to science and engineering fields.This project explores two hypotheses. The first working hypothesis is that, when workers view robots as partners, imperfection will be tolerated if the worker can successfully manage the robot to complete the task faster than their self-conceived rate. The determining factor regarding the value of a worker-robot collaborative partnership is hypothesized to be the worker’s ability to allocate the task workload between the robot and themselves towards an optimal partnership. The second working hypothesis is that the introduction of a supervisor to guide and promote task allocation will further contribute to enhanced worker-robot performance. This hypothesis builds on the observation that line supervisors interact with multiple workers, and thus are a repository of holistic institutional knowledge regarding good practice. To confirm these hypotheses and arrive at the anticipated framework, called the Worker-Robot Supervisor Effectiveness Model, requires a mixed-methods research design. First, a grounded theory study will establish assessment criteria related to worker, robot, and supervisor technology adoption and performance to develop an instrument for measuring both. Second, within a simulated manufacturing work cell environment, a set of experiments will investigate factors linked to successful technology adoption and work cell performance. Third, the findings from these studies will inform the creation of the model, which will provide guidance for effective integration, adoption, and supervision of worker-robot partnerships. Fourth, to confirm the applicability of the derived model, it will be used to field and integrate a robot within the existing processes of a real-world company. Field deployment will provide empirical evidence to validate and refine the model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在可实现的性能和可编程性方面的限制是从需要大量各种小批量任务的制造操作的完全自动化实现生产率提高的障碍。使用协作机器人来协助人类工人是克服这些障碍的一种有希望的方法,而不会取代人类的工作。目前在这一领域的努力集中在工人与机器人的伙伴关系上,忽视了管理员在管理工作量和分配任务方面的关键作用。通过考虑监督工作团队的更大背景,这项人类技术前沿工作的未来(FW-HTF)研究旨在通过提高与机器人合作的工人的效率来提高生产力和改善工人的生活质量。它提供了一个框架,用于分析工业环境中协作机器人的准备情况,评估采用情况和评估性能。与美国东南部公司的伙伴关系和互动将促进转化为实践的现实研究工作,使美国的中小型制造公司受益。为了吸引下一代的工作者和研究人员进入科学和工程领域,将向公众宣传所做的努力和发现。第一个工作假设是,当工人将机器人视为合作伙伴时,如果工人能够成功地管理机器人以比他们自己设想的速度更快的速度完成任务,那么不完美将被容忍。 关于工人-机器人协作伙伴关系的价值的决定因素被假设为工人的能力,以分配机器人和他们自己之间的任务工作量朝向最佳的伙伴关系。 第二个工作假设是,引入一个监督员,以指导和促进任务分配将进一步有助于提高工作机器人的性能。这一假设的基础是,一线主管与多名工人互动,因此是关于良好做法的整体机构知识库。为了证实这些假设,并达到预期的框架,称为工人机器人主管有效性模型,需要一个混合方法的研究设计。 首先,扎根理论研究将建立与工人,机器人和主管技术采用和性能相关的评估标准,以开发测量两者的工具。其次,在模拟的制造工作单元环境中,一组实验将调查与成功的技术采用和工作单元性能相关的因素。第三,这些研究的结果将为模型的创建提供信息,这将为工人-机器人伙伴关系的有效整合,采用和监督提供指导。第四,为了确认衍生模型的适用性,它将被用来在现实世界公司的现有流程中现场和集成机器人。现场部署将提供经验证据,以验证和完善模型。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heather Keathley-Herring其他文献

Assessing the maturity of a research area: bibliometric review and proposed framework
  • DOI:
    10.1007/s11192-016-2096-x
  • 发表时间:
    2016-08-13
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Heather Keathley-Herring;Eileen Van Aken;Fernando Gonzalez-Aleu;Fernando Deschamps;Geert Letens;Pablo Cardenas Orlandini
  • 通讯作者:
    Pablo Cardenas Orlandini

Heather Keathley-Herring的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

转HTFα对脊髓继发性损伤和微循环重建的影响
  • 批准号:
    39970755
  • 批准年份:
    1999
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326160
  • 财政年份:
    2023
  • 资助金额:
    $ 104.27万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
  • 批准号:
    2326198
  • 财政年份:
    2023
  • 资助金额:
    $ 104.27万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326159
  • 财政年份:
    2023
  • 资助金额:
    $ 104.27万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RM]: The Future of Nurse Training: Robotic Teaching Assistant Systems for Nursing Instructors
协作研究 [FW-HTF-RM]:护士培训的未来:护理讲师的机器人助教系统
  • 批准号:
    2326391
  • 财政年份:
    2023
  • 资助金额:
    $ 104.27万
  • 项目类别:
    Standard Grant
FW-HTF-RM: Addressing and Amplifying the Skills of the Future Hispanic and Latino Construction Workforce Using BIM and Augmented Reality
FW-HTF-RM:使用 BIM 和增强现实解决和增强未来西班牙裔和拉丁裔建筑劳动力的技能
  • 批准号:
    2326134
  • 财政年份:
    2023
  • 资助金额:
    $ 104.27万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: AI-Assisted Programming: Equipping Social and Natural Scientists for the Future of Research
合作研究:FW-HTF-RM:人工智能辅助编程:为社会和自然科学家的未来研究做好准备
  • 批准号:
    2326173
  • 财政年份:
    2023
  • 资助金额:
    $ 104.27万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RM]: The Future of Nurse Training: Robotic Teaching Assistant Systems for Nursing Instructors
协作研究 [FW-HTF-RM]:护士培训的未来:护理讲师的机器人助教系统
  • 批准号:
    2326390
  • 财政年份:
    2023
  • 资助金额:
    $ 104.27万
  • 项目类别:
    Standard Grant
FW-HTF-RM: Bridging AI Inequality in Digitally-Mediated Gig Work
FW-HTF-RM:弥合数字化零工工作中的人工智能不平等
  • 批准号:
    2326378
  • 财政年份:
    2023
  • 资助金额:
    $ 104.27万
  • 项目类别:
    Standard Grant
FW-HTF-RM: Collaborative Research: Assistive Intelligence for Cooperative Robot and Inspector Survey of Infrastructure Systems (AI-CRISIS)
FW-HTF-RM:协作研究:协作机器人辅助智能和基础设施系统检查员调查 (AI-CRISIS)
  • 批准号:
    2337277
  • 财政年份:
    2023
  • 资助金额:
    $ 104.27万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: AI-Assisted Programming: Equipping Social and Natural Scientists for the Future of Research
合作研究:FW-HTF-RM:人工智能辅助编程:为社会和自然科学家的未来研究做好准备
  • 批准号:
    2326174
  • 财政年份:
    2023
  • 资助金额:
    $ 104.27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了