I-Corps: A machine learning algorithm to predict recurrent disc herniation following microdiscectomy surgery
I-Corps:一种机器学习算法,用于预测显微椎间盘切除术后复发性椎间盘突出症
基本信息
- 批准号:2026677
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of software to predict spine surgery complications. There are 1.2 million spine surgeries nationally per year and about 25% (300,000 cases) of these are microdiscectomies. The main goal of microdiscectomy is to take pressure off your nerves to relieve back pain. Among spinal surgeries, microdiscectomies are less invasive and have quicker recovery times, however, 5-10% of microdiscectomy patients reherniate leading to additional surgery costs, longer patient recovery times, and lost productivity. Additionally, over 1/3 of reherniations occur within 3 months of the initial operation. To put this in perspective, these patients spend 6 weeks recovering from their first operation only to reherniate within a few months and return to the operating table for a second microdiscectomy or a spinal fusion. These revision surgeries often require months of further recovery time and pain. These secondary surgeries are also challenging for hospitals and insurance companies. Re-admissions decrease hospital quality ratings, and are often not reimbursed by insurance companies if they happen within 90 days. The proposed technology helps support a reduction in surgical re-admittance by identifying patients likely to reherniate and allowing for risk mediation, saving patients unnecessary pain and reducing hospital costs. This I-Corps project is based on the development of a machine learning algorithm that uses presurgical data to predict which patients are likely to suffer from recurrent disc herniation following microdiscectomy surgery. This technology aims to reduce the complication rates, thereby increasing patient satisfaction and decreasing costs to the patient and hospital. The machine learning algorithm is capable of correctly identifying 98% of herniation patients as either at risk or not at risk of reherniation in a cohort of 350 patients from one institute. Expansion of this work to multiple institutes is underway. Results have been collected from 1077 patients from 4 institutes in 3 countries thus far, showing that predicted rates of reherniation are higher in reherniated patients; however, the overall percent correct classification is still poor in some institutes because of physician inter-evaluator variability in calculating input metrics from radiographs. The goal is to develop semi-automated image analysis software to calculate input metrics, creating more consistency among institutions. This consistency will make it possible to provide a predictive tool capable of compiling all of the potential risk factors for reherniation and to report a single unified probability of risk so that care decisions are better informed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
I-Corps项目更广泛的影响/商业潜力是开发预测脊柱手术并发症的软件。全国每年有120万例脊柱手术,其中约25%(30万例)是微椎间盘切除术。微椎间盘切除术的主要目的是减轻神经压力,减轻背部疼痛。在脊柱手术中,微椎间盘切除术侵入性小,恢复时间快,然而,5-10%的微椎间盘切除术患者再次突出,导致额外的手术费用,更长的患者恢复时间和生产力损失。此外,超过1/3的再疝发生在首次手术后的3个月内。从这个角度来看,这些患者从第一次手术中恢复需要6周的时间,但在几个月内再次突出,并回到手术台上进行第二次微椎间盘切除术或脊柱融合术。这些翻修手术通常需要几个月的恢复时间和疼痛。这些二次手术对医院和保险公司来说也是一个挑战。再次入院会降低医院的质量评级,如果在90天内再次入院,保险公司通常不会报销。该技术通过识别可能再次疝出的患者,并允许风险调节,减少患者不必要的痛苦,降低医院费用,有助于减少手术再入院率。这个I-Corps项目是基于一种机器学习算法的开发,该算法使用手术前数据来预测哪些患者可能在微椎间盘切除术后复发椎间盘突出。这项技术旨在降低并发症发生率,从而提高患者满意度,降低患者和医院的成本。在一个研究所的350名患者队列中,机器学习算法能够正确识别98%的疝患者是否有再次疝的风险。目前正在将这项工作扩展到多个研究所。迄今为止,从3个国家的4个研究所收集的1077例患者的结果显示,再疝患者的预测再疝率更高;然而,在一些机构中,由于医师间评估者在计算x线片输入指标方面的差异,分类的总体正确率仍然很低。目标是开发半自动图像分析软件来计算输入指标,在机构之间建立更多的一致性。这种一致性将有可能提供一种预测工具,能够汇编所有潜在的再疝风险因素,并报告单一统一的风险概率,以便更好地了解护理决策。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Morgan Giers其他文献
Morgan Giers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
- 批准号:
2425300 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Machine Learning Risk Stratification Tool for Venous Thromboembolism
I-Corps:机器学习风险分层工具对静脉血栓栓塞的转化潜力
- 批准号:
2420417 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Machine Learning-Based Burn Injury Diagnosis and Care
I-Corps:基于机器学习的烧伤诊断和护理
- 批准号:
2326781 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: A Machine Learning Tool for Medical Device History and Recalls
I-Corps:用于医疗器械历史和召回的机器学习工具
- 批准号:
2334058 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Machine Learning Algorithm for Cardiovascular Disease Diagnosis
I-Corps:用于心血管疾病诊断的机器学习算法
- 批准号:
2331156 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: A machine learning model based on neural networks trained to recognize correlations and patterns that indicates possible medical complications
I-Corps:基于神经网络的机器学习模型,经过训练可以识别指示可能的医疗并发症的相关性和模式
- 批准号:
2321426 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Machine Learning and Bio-Signal Processing for Enhancing Empathy Training
I-Corps:用于增强同理心训练的机器学习和生物信号处理
- 批准号:
2237325 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Machine Learning Enhanced Automated Circuit Configuration and Evaluation of Power Converters
I-Corps:机器学习增强电源转换器的自动化电路配置和评估
- 批准号:
2245187 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Fast and Accurate Artificial Intelligence/Machine Learning Solutions to Inverse and Imaging Problems
I-Corps:针对逆向和成像问题的快速准确的人工智能/机器学习解决方案
- 批准号:
2224299 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Automated Pavement Evaluation Using Advanced Machine Learning
I-Corps:使用先进机器学习自动路面评估
- 批准号:
2229743 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant