EAGER: Nanostructure-Enabled Solution Catalysis with Concentration Gradients

EAGER:具有浓度梯度的纳米结构溶液催化

基本信息

  • 批准号:
    2027330
  • 负责人:
  • 金额:
    $ 23.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

With this award, the Chemical Catalysis Program of the NSF Division of Chemistry is funding Dr. Chong Liu of the University of California, Los Angeles to explore new chemistry and reactivity in solution catalysis where the concentrations of reactants and catalysts are controlled in space. Chemical transformations ranging from fundamental investigations to industrial manufacturing are often conducted in solution. It is usually true that the various chemical species are uniformly dispersed throughout the solution. While this often simplifies chemical processes it can also be a limitation. For example, some reactants may not be compatible with each other, with their reactions leading to undesirable side reactions and waste. In these cases it is advantageous to keep these species separated. Dr. Liu is accomplishing this challenge with electrochemistry using arrays of nanometer scale wires. Successful implementation of the proposed work would potentially offer a new paradigm in chemical synthesis with a multifaceted approach involving nanoscience, electrochemistry, and catalysis. Dr. Liu's research team, including women and students from underrepresented groups, will be engaged in highly interdisciplinary research in this project. Dr. Liu and his team hypothesize that the electrochemistry of nanowire arrays yields controllable local O2 gradient microscopically, which enables O2-sensitive organometallic catalysts to perform oxidative reactions such as direct methane (CH4) to methanol (CH3OH) conversion. Dr. Liu’s research group will design and characterize concentration gradients generated by wire array electrodes, establish a selective CH4-to-CH3OH conversion of O2-deactivating catalysts with O2 oxidant at ambient condition, and explore additional scenarios of solution catalysis that benefits from concentration gradients. This project establishes the design principle of homogenous catalysis with concentration heterogeneity, by addressing two important questions: (1) How can one use electric potential to control and generate a pre-designed concentration profile at microscopic scale? (2) What improvements can be attained for solution catalysis via the establishment of microscopic concentration gradients? The integration of nanoscience and homogenous catalysis provides a unique and potentially powerful approach to control reactions at both molecular and microscopic length scalesThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有了这个奖项,美国国家科学基金会化学部的化学催化计划正在资助加州大学洛杉矶分校的Chong Liu博士,以探索溶液催化中的新化学和反应性,其中反应物和催化剂的浓度在太空中得到控制。从基础研究到工业生产的化学转化通常在溶液中进行。通常,各种化学物质均匀地分散在整个溶液中。虽然这通常简化了化学过程,但它也可能是一种限制。例如,一些反应物可能彼此不相容,它们的反应导致不期望的副反应和浪费。在这些情况下,保持这些物质分离是有利的。 刘博士正在通过使用纳米级导线阵列的电化学来完成这一挑战。拟议工作的成功实施可能会提供一个新的化学合成范式,涉及纳米科学,电化学和催化的多方面方法。刘博士的研究团队,包括来自代表性不足群体的妇女和学生,将在这个项目中从事高度跨学科的研究。 Liu博士和他的团队假设,纳米线阵列的电化学在显微镜下产生可控的局部O2梯度,这使得O2敏感的有机金属催化剂能够进行氧化反应,例如直接将甲烷(CH 4)转化为甲醇(CH 3OH)。Liu博士的研究小组将设计和表征线阵列电极产生的浓度梯度,在环境条件下使用O2氧化剂建立O2失活催化剂的选择性CH 4-to-CH 3OH转化,并探索受益于浓度梯度的溶液催化的其他场景。本研究建立了具有浓度非均匀性的均相催化的设计原理,通过解决两个重要问题:(1)如何在微观尺度上利用电势来控制和产生预先设计的浓度分布?(2)通过建立微观浓度梯度,溶液催化可以得到哪些改进?纳米科学和均相催化的整合提供了一种独特的和潜在的强大的方法来控制反应在分子和微观长度scalesThis奖项反映了NSF的法定使命,并已被认为是值得支持的,通过评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chong Liu其他文献

(+)-Neplanocin F, 2′-fluoroneplanocin, and a 6′-isoneplanocin via a common versatile cyclopentenol precursor
(+)-Neplanocin F、2-氟neplanocin 和 6-isoneplanocin 通过常见的多功能环戊烯醇前体生成
  • DOI:
    10.1016/j.tetlet.2011.07.059
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Chong Liu;Qi Chen;S. Schneller
  • 通讯作者:
    S. Schneller
The role of oxidative stress in association between disinfection by-products exposure and semen quality: A mediation analysis among men from an infertility clinic
氧化应激在消毒副产物暴露和精液质量之间的作用:不孕不育诊所男性的中介分析
  • DOI:
    10.1016/j.chemosphere.2020.128856
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Min Zhang;Chong Liu;Fei-Peng Cui;Pan-Pan Chen;Yan-Ling Deng;Qiong Luo;Yu Miao;Shengzhi Sun;Yu-Feng Li;Wen-Qing Lu;Qiang Zeng
  • 通讯作者:
    Qiang Zeng
Study on Timing Performance of a Readout Circuit for SiPM
SiPM读出电路时序性能研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liwei Wang;Yonggang Wang;Qiang Cao;Yong Xiao;Chong Liu
  • 通讯作者:
    Chong Liu
Window-aware guided image filtering via local entropy
通过局部熵进行窗口感知引导图像过滤
  • DOI:
    10.1049/ipr2.12117
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Chong Liu;Cui Yang;Jun Wang
  • 通讯作者:
    Jun Wang
Evaporation charateristics of micropores in a biomimetic micropump
仿生微泵微孔蒸发特性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chong Liu;Lei Wang;Jingmin Li
  • 通讯作者:
    Jingmin Li

Chong Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chong Liu', 18)}}的其他基金

Automated Electrochemical Research based on Deep Learning
基于深度学习的自动化电化学研究
  • 批准号:
    2247426
  • 财政年份:
    2023
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Continuing Grant
CAREER: Solution Catalysis Containing Seemingly Incompatible Steps
职业:含有看似不相容步骤的溶液催化
  • 批准号:
    2143952
  • 财政年份:
    2022
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Continuing Grant
EAGER: ADAPT: AI-based Categorization to Decipher Reaction Mechanisms from Cyclic Voltammetry
EAGER:ADAPT:基于人工智能的分类来破译循环伏安法的反应机制
  • 批准号:
    2140762
  • 财政年份:
    2021
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Standard Grant
CAS: Ambient Electrochemical Activation of Light Alkanes with Early Transition Metal-Oxo Species
CAS:利用早期过渡金属-氧代物质对轻质烷烃进行环境电化学活化
  • 批准号:
    1955836
  • 财政年份:
    2020
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Standard Grant

相似海外基金

Fatigue Characterization of Ultrahigh Strength and Ductile Mg-Gd-Y-Zn-Zr Alloy with Hierarchical Anisotropic Nanostructure
多级各向异性纳米结构超高强韧性Mg-Gd-Y-Zn-Zr合金的疲劳表征
  • 批准号:
    22KF0310
  • 财政年份:
    2023
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
  • 批准号:
    10750025
  • 财政年份:
    2023
  • 资助金额:
    $ 23.98万
  • 项目类别:
Evolution of nanostructure and properties in nuclear graphite with irradiation damage
辐照损伤下核石墨纳米结构和性能的演变
  • 批准号:
    2889672
  • 财政年份:
    2023
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Studentship
Virtual nanostructure simulation (VINAS) portal
虚拟纳米结构模拟 (VINAS) 门户
  • 批准号:
    10567076
  • 财政年份:
    2023
  • 资助金额:
    $ 23.98万
  • 项目类别:
Japan_IPAP - Top-down meets bottom-up: Designer membrane-less organelles from condensation of synthetic RNA nanostructure
Japan_IPAP - 自上而下与自下而上相遇:通过合成 RNA 纳米结构的浓缩设计无膜细胞器
  • 批准号:
    BB/X012557/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Research Grant
Linking formation mechanisms, nanostructure and function in metal oxide nanosheets using multimodal characterisation.
使用多峰表征将金属氧化物纳米片的形成机制、纳米结构和功能联系起来。
  • 批准号:
    EP/W026937/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Research Grant
Effect of mechanical properties and surface nanostructure on phosphate-based glasses biomedical performance
机械性能和表面纳米结构对磷酸盐基玻璃生物医学性能的影响
  • 批准号:
    2845244
  • 财政年份:
    2023
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Studentship
Development, control, and functional significance of variations in collagen fibril nanostructure, with application to the creation of novel biomaterials
胶原纤维纳米结构变化的开发、控制和功能意义,及其在新型生物材料创建中的应用
  • 批准号:
    RGPIN-2020-06035
  • 财政年份:
    2022
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructure transfer to cell membrane by cytoplasmic gelation and its optical sensor application
细胞质凝胶化纳米结构转移至细胞膜及其光学传感器应用
  • 批准号:
    22K18760
  • 财政年份:
    2022
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Creation of chiral reaction field using nanostructure
利用纳米结构创建手性反应场
  • 批准号:
    22K19003
  • 财政年份:
    2022
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了