Enabling Hydrogen Gas Production from Seawater Using Electrolytes Contained by Reverse Osmosis Membranes

利用反渗透膜含有的电解质从海水中生产氢气

基本信息

  • 批准号:
    2027552
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The production of hydrogen gas is a significant component of global energy consumption and carbon emissions, accounting for 1% of global energy use. More than half this hydrogen is used to make fertilizer, and nearly all hydrogen gas is currently produced from fossil fuels. However, hydrogen gas can be produced from water using renewable electricity sources in a process called electrolysis, which splits water molecules into hydrogen and oxygen gases. The relative abundance of affordable wind energy, solar arrays, and seawater at offshore and coastal locations make them ideal sites for hydrogen gas production by this approach. However, the cost of hydrogen production by using a water electrolyzer must be reduced to make it economically competitive with other methods. Also, the production of toxic chemical byproducts from the chloride salts in seawater must be avoided. To meet these demands, the membranes typically used in electrolyzer systems will be replaced with the relatively inexpensive, salt-rejecting membranes commonly used for reverse osmosis (RO) seawater desalination. The use of RO membranes represents a fundamentally new approach to water electrolysis for hydrogen gas production. The RO membranes can be used to contain the seawater salts so that they do not react to form chemicals that are toxic or that could damage the membranes. This use of these ion-size selective RO membranes could have a large impact on methods for hydrogen gas production as well as other electrochemical separation technologies. This project, therefore, addresses a critical societal need for hydrogen gas production using a sustainable process. An educational platform will also be developed to engage the public in a conversation about energy use. The platform is expected to enhance general understanding of how our daily energy use can be modified to reduce fossil fuel use and carbon dioxide emissions.This research project will develop a new seawater electrolysis approach to reduce the cost of water electrolyzers. The objective will be accomplished by eliminating the use of costly proton exchange membranes and containing the anolyte to avoid chlorine gas production from chloride salts in seawater. To accomplish these goals, the proton exchange membrane will be replaced with a reverse osmosis (RO) membrane that can exclude ions while allowing proton ion transport between the electrodes, balancing charge between the electrolytes. The anolyte is contained by the RO membrane so that only oxygen gas evolution occurs in that compartment, and hydrogen gas evolution from seawater occurs in the catholyte, enabled by proton transport through the RO membrane. This approach, therefore, uses RO membranes for simultaneous salt ion retention and charged ion (proton) transport. Gas transport is avoided between the chambers and the RO membrane enables direct pressurized production of hydrogen. Water replacement in the anolyte can be accomplished by balancing osmotic pressure to achieve forward osmosis or by intermittent pressure adjustments between the two chambers. Preliminary data support this claim that some RO membranes have sufficiently low internal resistance to support high current densities (100 Amps per square centimeter). Methods are proposed to reduce crossover of salts and improve membrane performance through nanoscale engineering of the membrane surface and supporting structures. This RO membrane approach could make hydrogen gas production from water electrolysis using renewable energy cost-competitive with steam reforming using fossil fuels, which would have a great societal benefit. Another project goal with broad applications is to enhance energy literacy of the public by exploring energy use based in terms of a daily energy unit, D, which ranges from 1 (food for one person) to 106 (energy normalized per person in the USA per day). Materials will be developed for an undergraduate seminar class, and a website and videos will be developed aimed at assisting STEM students in understanding energy used based on D and the carbon dioxide emissions unit, C (daily carbon dioxide emissions from one person).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
氢气生产是全球能源消耗和碳排放的重要组成部分,占全球能源使用量的1%。其中一半以上的氢气用于制造肥料,目前几乎所有的氢气都来自化石燃料。然而,氢气可以通过一种叫做电解的过程,利用可再生电力从水中产生,这种过程将水分子分解成氢气和氧气。海上和沿海地区相对丰富的廉价风能、太阳能电池阵列和海水使它们成为通过这种方法生产氢气的理想场所。然而,使用水电解槽制氢的成本必须降低,以使其在经济上与其他方法具有竞争力。此外,必须避免海水中的氯化物盐产生有毒的化学副产品。为了满足这些需求,电解槽系统中通常使用的膜将被相对便宜的、通常用于反渗透(RO)海水淡化的拒盐膜所取代。反渗透膜的使用代表了一种全新的水电解氢气生产方法。反渗透膜可以用来容纳海水盐,这样它们就不会反应形成有毒的化学物质或可能损坏膜。这些离子大小的选择性反渗透膜的使用可能会对氢气生产方法以及其他电化学分离技术产生重大影响。因此,该项目解决了使用可持续过程生产氢气的关键社会需求。还将开发一个教育平台,让公众参与有关能源使用的对话。该平台有望提高人们对如何改变我们的日常能源使用以减少化石燃料使用和二氧化碳排放的普遍认识。本研究项目将开发一种新的海水电解方法,以降低水电解槽的成本。该目标将通过消除昂贵的质子交换膜的使用和含有阳极电解质来避免海水中的氯化物盐产生氯气来实现。为了实现这些目标,质子交换膜将被反渗透(RO)膜取代,该膜可以排除离子,同时允许质子离子在电极之间传输,平衡电解质之间的电荷。阳极液被RO膜所包含,因此只有氧气在该隔室中析出,而来自海水的氢气在阴极液中析出,这是由质子通过RO膜传输实现的。因此,这种方法使用反渗透膜同时进行盐离子保留和带电离子(质子)运输。避免了腔室之间的气体输送,RO膜可以直接加压生产氢气。阳极液中的水置换可以通过平衡渗透压以实现正向渗透或通过两个腔室之间的间歇压力调节来完成。初步数据支持这一说法,即一些反渗透膜具有足够低的内阻来支持高电流密度(每平方厘米100安培)。提出了通过膜表面和支撑结构的纳米工程来减少盐的交叉和提高膜性能的方法。这种反渗透膜方法可以使使用可再生能源的水电解制氢与使用化石燃料的蒸汽重整在成本上具有竞争力,这将具有巨大的社会效益。另一个具有广泛应用的项目目标是通过探索以每日能量单位D为基础的能源使用来提高公众的能源知识,D的范围从1(一个人的食物)到106(美国每人每天的标准化能量)。将为本科研讨班开发材料,并开发一个网站和视频,旨在帮助STEM学生了解基于D的能源使用和二氧化碳排放单位C(一个人每天的二氧化碳排放量)。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electrochemical and hydraulic analysis of thin-film composite and cellulose triacetate membranes for seawater electrolysis applications
用于海水电解应用的薄膜复合材料和三醋酸纤维素膜的电化学和水力分析
  • DOI:
    10.1016/j.memsci.2023.121692
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Taylor, Rachel;Shi, Le;Zhou, Xuechen;Rossi, Ruggero;Picioreanu, Cristian;Logan, Bruce E.
  • 通讯作者:
    Logan, Bruce E.
Using reverse osmosis membranes to control ion transport during water electrolysis
  • DOI:
    10.1039/d0ee02173c
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    32.5
  • 作者:
    Le Shi;R. Rossi;M. Son;Derek M. Hall;M. Hickner;C. Gorski;B. Logan
  • 通讯作者:
    Le Shi;R. Rossi;M. Son;Derek M. Hall;M. Hickner;C. Gorski;B. Logan
Energy Use for Electricity Generation Requires an Assessment More Directly Relevant to Climate Change
  • DOI:
    10.1021/acsenergylett.0c02093
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    22
  • 作者:
    B. Logan;R. Rossi;Gahyun Baek;Le Shi;J. O’Connor;W. Peng
  • 通讯作者:
    B. Logan;R. Rossi;Gahyun Baek;Le Shi;J. O’Connor;W. Peng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruce Logan其他文献

Uphill transport of sulfate and chloride ions under different operational conditions of a reverse electrodialysis (RED) stack
在反向电渗析(RED)堆的不同操作条件下硫酸根离子和氯离子的上坡运输
  • DOI:
    10.1016/j.cej.2025.160897
  • 发表时间:
    2025-03-15
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Arash Emdadi;Lauren F. Greenlee;Bruce Logan
  • 通讯作者:
    Bruce Logan
The high energetic potential of hydraulic fracturing wastewaters with both salinity and temperature gradients for electricity generation using a reverse electrodialysis stack
  • DOI:
    10.1016/j.cej.2024.153967
  • 发表时间:
    2024-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Arash Emdadi;Jamie Hestekin;Lauren F. Greenlee;Bruce Logan
  • 通讯作者:
    Bruce Logan
Your personal choices in transportation and food are important for lowering carbon emissions

Bruce Logan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruce Logan', 18)}}的其他基金

Conference: Workshop on Mobilizing Our Universities for Education on Energy Use, Carbon Emissions, and Climate Change
会议:动员大学开展能源使用、碳排放和气候变化教育研讨会
  • 批准号:
    2402605
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I-Corps: Electrolyzers for Green Hydrogen Production Using Reverse Osmosis Membranes
I-Corps:使用反渗透膜生产绿色氢气的电解槽
  • 批准号:
    2347951
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SusChem: Enhanced Electricity Production from Engineered Salinity Gradients Using Capacitive Mixing
EAGER:SusChem:利用电容混合提高工程盐度梯度的发电量
  • 批准号:
    1464891
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Symposium on Microbial Fuel Cells and Bioenergy
微生物燃料电池与生物能源研讨会
  • 批准号:
    0803137
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Microbial Fuel Cell Architectures for a New Wastewater Treatment System
用于新型废水处理系统的微生物燃料电池架构
  • 批准号:
    0730359
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Improving Power Generation in Microbial Fuel Cells
提高微生物燃料电池的发电能力
  • 批准号:
    0401885
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
SGER: Determination of the Potential for Direct Generation of Electricity from Wastewater Using a Microbial Fuel Cell
SGER:确定使用微生物燃料电池从废水直接发电的潜力
  • 批准号:
    0331824
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
2001 Technology for a Sustainable Environment: NSF/EPA Partnership: Biological hydrogen production as a sustainable green technology for pollution prevention (TSE01-D)
2001 可持续环境技术:NSF/EPA 合作伙伴关系:生物制氢作为预防污染的可持续绿色技术 (TSE01-D)
  • 批准号:
    0124674
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Respiratory Enzymes Used for Perchlorate Reduction
用于减少高氯酸盐的呼吸酶
  • 批准号:
    0001900
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Molecular Level Analysis of Macromolecule-Surface Interactions in Bacterial Adhesion
细菌粘附中大分子-表面相互作用的分子水平分析
  • 批准号:
    0089156
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
  • 批准号:
    24K17650
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Energy measurement module validation for hydrogen/natural gas blends
氢气/天然气混合物的能量测量模块验证
  • 批准号:
    10089313
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Towards highly-efficient hydrogen gas turbines
迈向高效氢燃气轮机
  • 批准号:
    DP240100450
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
A novel treatment for REBOA complications: Hydrogen gas inhalation therapy to alleviate oxidative stress due to ischemia-reperfusion injury
REBOA并发症的新型治疗方法:氢气吸入疗法减轻缺血再灌注损伤引起的氧化应激
  • 批准号:
    23K21458
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Safety of hydrogen and natural gas blends
氢气和天然气混合物的安全性
  • 批准号:
    2888392
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Anti-inflammatory Effects of Hydrogen Gas Produced by Gut Microflora in a Mouse Model of ARDS
肠道菌群产生的氢气对 ARDS 小鼠模型的抗炎作用
  • 批准号:
    23K08467
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Visualised Real-Time Monitoring of Hydrogen Gas Leakage and Compositions - Improving a Smart Technology
可视化实时监测氢气泄漏和成分——改进智能技术
  • 批准号:
    10062988
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
PFI-RP: Converting waste gas into clean hydrogen for sustainable steel production
PFI-RP:将废气转化为清洁氢气,实现可持续钢铁生产
  • 批准号:
    2329857
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
The optimal hydrogen gas inhalation concentration range for cerebral hemodynamic impairment in hypoxic-ischemic encephalopathy.
缺氧缺血性脑病脑血流动力学损害的最佳氢气吸入浓度范围。
  • 批准号:
    23K07332
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
H2LAB: A laboratory for investigating hydrogen blending in natural gas from injection to combustion
H2LAB:研究天然气中氢从注入到燃烧过程中混合的实验室
  • 批准号:
    557088-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了