RAPID: Tracking the Coronovirus in municipal wastewater

RAPID:追踪城市废水中的冠状病毒

基本信息

  • 批准号:
    2027679
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

The ongoing COVID-19 pandemic has caused major human health and economic impacts. One of the most critical questions is determining who is infected to help understand how rapidly the outbreak has progressed. With the continuing mismatch between testing need and capacity, alternative methods are needed to assess the outbreak. Further difficulty in monitoring the outbreak results from the fact that most infected individuals do not show COVID-19 symptoms immediately. These issues limit the ability of decision makers to determine where outbreaks are occurring within their communities, when outbreaks start, and when outbreaks slow or stop. The goal of this project is to address such limitations by developing the science behind monitoring the spread of the disease through community wastewater surveillance. To achieve this goal, the research will measure SARS-CoV2, the virus that causes COVID-19, in the wastewater system. This new detection method will allow for decision makers to assess potential outbreaks before symptomatic people request testing. In addition, results will help determine which communities have infected individuals. This is particularly important to assess whether the COVID-19 outbreak is slowing in response to interventions.The goal of this project is to determine the onset, duration, termination, and location of the COVID-19 outbreak via wastewater surveillance. This work will test two hypotheses that: 1) SARS-CoV2 virus RNA concentrations in sewage and stormwater correlates with the initiation, progression, and decline of a community’s aggregate COVID-19 infection; 2) Spatial sampling within a sewer system network can isolate the location of COVID-19 hotspots within a given community. To test these hypotheses, two objectives will be completed: 1) SARS-CoV2 RNA in four Clean Water Services (CWS, Washington County, Oregon) wastewater treatment facilities and stormwater collection systems will be quantified using reverse transcriptase droplet digital polymerase chain reaction (RT-ddPCR) on a weekly basis. In the wastewater treatment plants, SARS-CoV2 RNA will be quantified in liquid primary clarifier effluent and in primary clarifier solids. At stormwater collection systems, SARS-CoV2 RNA will be quantified from the liquid and solid fractions. 2) SARS-CoV2 RNA will be quantified using RT-ddPCR at 12 selected sampling points throughout the CWS sewer system network on a biweekly basis through June, 2020, and monthly for the remainder of the project. The results will be incorporated into a GIS system containing publicly available demographic databases to identify COVID-19 hotspots and possible underlying contributing factors. The results of this work will demonstrate the feasibility of using wastewater collected at a centralized treatment facility to monitor COVID-19 outbreaks for an entire community. A second outcome of this work will determine how SARS-CoV2 RNA partitions between wastewater solids and liquid factions. Additionally, this work will determine if stormwater is a potential reservoir of SARS-CoV2 RNA during a COVID-19 outbreak. Finally, this work will demonstrate how sampling throughout a sewer line network can identify COVID-19 outbreak hotspots. If successful, this research could lead to other similar monitoring efforts for other viral outbreaks and protect the public health of the Nation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
持续的COVID-19大流行对人类健康和经济造成了重大影响。最关键的问题之一是确定谁被感染,以帮助了解疫情发展的速度。由于检测需求与能力之间的持续不匹配,需要采用其他方法来评估疫情。监测疫情的进一步困难在于,大多数感染者不会立即表现出COVID-19症状。这些问题限制了决策者确定其社区内何处发生疫情、疫情何时开始以及疫情何时减缓或停止的能力。该项目的目标是通过发展通过社区废水监测监测疾病传播背后的科学来解决这些限制。为了实现这一目标,该研究将测量废水系统中导致COVID-19的病毒SARS-CoV2。这种新的检测方法将允许决策者在有症状的人要求检测之前评估潜在的疫情。此外,结果将有助于确定哪些社区感染了个人。这对于评估COVID-19疫情是否因干预措施而放缓尤为重要。该项目的目标是通过废水监测确定COVID-19爆发的开始、持续时间、终止和地点。这项工作将测试两个假设:1)污水和雨水中SARS-CoV2病毒RNA浓度与社区总COVID-19感染的开始、进展和下降相关;2)下水道系统网络内的空间采样可以隔离特定社区内COVID-19热点的位置。为了验证这些假设,将完成两个目标:1)每周使用逆转录酶液滴数字聚合酶链反应(RT-ddPCR)对四个清洁水服务(CWS, Washington County, Oregon)废水处理设施和雨水收集系统中的SARS-CoV2 RNA进行量化。在污水处理厂,将对初级澄清池流出液和初级澄清池固体中的SARS-CoV2 RNA进行量化。在雨水收集系统中,将从液体和固体部分定量SARS-CoV2 RNA。2)到2020年6月,将在整个CWS下水道系统网络的12个选定采样点使用RT-ddPCR对SARS-CoV2 RNA进行定量,每两周进行一次,在项目剩余时间内每月进行一次。调查结果将被纳入一个包含公开人口数据库的GIS系统,以确定COVID-19热点地区和可能的潜在影响因素。这项工作的结果将证明利用集中处理设施收集的废水监测整个社区COVID-19疫情的可行性。这项工作的第二个结果将确定SARS-CoV2 RNA如何在废水固体和液体部分之间划分。此外,这项工作将确定在COVID-19爆发期间,雨水是否是SARS-CoV2 RNA的潜在储存库。最后,这项工作将展示如何在整个污水管网中进行采样,以确定COVID-19爆发热点。如果成功,这项研究可能会导致对其他病毒爆发的其他类似监测工作,并保护国家的公众健康。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reproducibility and sensitivity of 36 methods to quantify the SARS-CoV-2 genetic signal in raw wastewater: findings from an interlaboratory methods evaluation in the U.S.
  • DOI:
    10.1039/d0ew00946f
  • 发表时间:
    2021-01-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pecson BM;Darby E;Haas CN;Amha YM;Bartolo M;Danielson R;Dearborn Y;Di Giovanni G;Ferguson C;Fevig S;Gaddis E;Gray D;Lukasik G;Mull B;Olivas L;Olivieri A;Qu Y;SARS-CoV-2 Interlaboratory Consortium
  • 通讯作者:
    SARS-CoV-2 Interlaboratory Consortium
Impact of Sampling Type, Frequency, and Scale of the Collection System on SARS-CoV-2 Quantification Fidelity
  • DOI:
    10.1021/acs.estlett.1c00882
  • 发表时间:
    2022-01-18
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    George, Andrea D.;Kaya, Devrim;Radniecki, Tyler S.
  • 通讯作者:
    Radniecki, Tyler S.
Wastewater Surveillance for SARS-CoV-2 on College Campuses: Initial Efforts, Lessons Learned, and Research Needs.
  • DOI:
    10.3390/ijerph18094455
  • 发表时间:
    2021-04-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harris-Lovett S;Nelson KL;Beamer P;Bischel HN;Bivins A;Bruder A;Butler C;Camenisch TD;De Long SK;Karthikeyan S;Larsen DA;Meierdiercks K;Mouser PJ;Pagsuyoin S;Prasek SM;Radniecki TS;Ram JL;Roper DK;Safford H;Sherchan SP;Shuster W;Stalder T;Wheeler RT;Korfmacher KS
  • 通讯作者:
    Korfmacher KS
Standardizing data reporting in the research community to enhance the utility of open data for SARS-CoV-2 wastewater surveillance
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tyler Radniecki其他文献

Evaluation of molecular-based methods for the detection and quantification of emCryptosporidium/em spp. in wastewater
废水中间孢囊虫属(EmCryptosporidium)检测和定量的基于分子的方法评估
  • DOI:
    10.1016/j.scitotenv.2024.174219
  • 发表时间:
    2024-10-15
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Oumaima Hachimi;Rebecca Falender;Gabriel Davis;Rispa Vranka Wafula;Melissa Sutton;June Bancroft;Paul Cieslak;Christine Kelly;Devrim Kaya;Tyler Radniecki
  • 通讯作者:
    Tyler Radniecki

Tyler Radniecki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tyler Radniecki', 18)}}的其他基金

CAREER: Moving beyond descriptive genomic studies - Applying theoretical ecology principles to predictably intensify anaerobic co-digestion processes
职业:超越描述性基因组研究 - 应用理论生态学原理以可预测的方式强化厌氧共消化过程
  • 批准号:
    1847654
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于非结构化网格Front Tracking方法的复杂流动区域弹性界面液滴动力学研究
  • 批准号:
    52006188
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
面向矿区地表大形变的PSI/DInSAR与Offset-tracking深度融合方法研究
  • 批准号:
    51804297
  • 批准年份:
    2018
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
非规则网格的front tracking 方法研究与程序实现
  • 批准号:
    11176015
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    联合基金项目
多流体ALE模式下Front tracking 界面追踪法研究
  • 批准号:
    10901022
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Ultrafast tracking of physiological processes in the human eye
超快速跟踪人眼的生理过程
  • 批准号:
    DP240103352
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Projects
Tracking flood waters over Australia using space gravity data
使用空间重力数据跟踪澳大利亚的洪水
  • 批准号:
    DP240102399
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Projects
Combining eye-tracking and comparative judgments to identify proficiency differences for more effective language learning
结合眼动追踪和比较判断来识别熟练程度差异,以实现更有效的语言学习
  • 批准号:
    24K16140
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploitation of High Voltage CMOS sensors for tracking applications in physics experiments and beyond
利用高压 CMOS 传感器跟踪物理实验及其他领域的应用
  • 批准号:
    MR/X023834/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Fellowship
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
An Eye-Tracking Study: Exploring Integrated Reading Tasks in the New Format of the English Common Test for Japanese University Admissions
眼动追踪研究:探索日本大学入学英语通用考试新形式中的综合阅读任务
  • 批准号:
    24K04032
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
TEXL: Tracking Excellence in Leadership
TEXL:追踪卓越领导力
  • 批准号:
    ES/Y010779/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Evaluating the Use of Machine Translation through Eye Tracking
通过眼动追踪评估机器翻译的使用
  • 批准号:
    24K04055
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AI-Powered Acoustic Monitoring for Scalable Biodiversity Tracking
人工智能驱动的声学监测可扩展生物多样性跟踪
  • 批准号:
    10107703
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Launchpad
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了