Collaborative Research: Operator theoretic methods for identification and verification of dynamical systems

合作研究:动力系统识别和验证的算子理论方法

基本信息

  • 批准号:
    2028001
  • 负责人:
  • 金额:
    $ 22.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Widespread use of automation in many sectors of society has yielded a large amount of data regarding historical behaviors for a variety of dynamical systems, such as unmanned aerial, marine, and ground vehicles, biological systems, and weather systems. This project aims to develop novel algorithms to discover governing rules that explain the observed behaviors (i.e., trajectories) of dynamical systems. Discovery of underlying models, while useful for analysis and control, can be computationally challenging. For example, traditional modeling methods rely on derivatives, and can be hampered by even modest amounts of measurement noise that derails numerical differentiation. Such methods treat each measurement of the output of a dynamical system as a separate data point. The data points are then related back to the underlying model using numerical differentiation. Instead, in this project, the entire trajectory is treated as a unit of interest. The sequence of measured data points is treated as a sampled, noisy representation of that trajectory, and is related back to the underlying model using numerical integration. It is hypothesized that treating trajectories of dynamical systems as the fundamental unit of data can yield better data-driven techniques for analysis and control of dynamical systems, and this project aims to develop such data-driven identification and verification techniques. To broaden the impact of the research, the team will also develop week-long workshops for undergraduate students that teach data science and artificial intelligence (AI) concepts through video games. To facilitate early introduction to machine learning, the team will also develop versions of the AI workshops that are suitable to be offered during high school summer camps. The specific aim of this project is to develop a new theoretical framework to process a large amount of time-series data and to apply the framework to yield robust and flexible tools for the study of nonlinear dynamical systems. In the proposed approach, trajectory information is embedded in a reproducing kernel Hilbert space (RKHS) through what are called occupation kernels. The occupation kernels are tied to the original dynamics through a densely defined operator, the Liouville operator. Occupation kernels and Liouville operators result in a nontrivial generalization of contemporary methods that study finite-dimensional nonlinear optimization problems by lifting them into infinite dimensional linear programs over the spaces of measures. The proposed approach facilitates lifting into linear programs over function spaces instead of measure spaces, and as a result, tools from function theory and approximation theory become available for design and analysis of algorithms. The specific aims of the project include: studying fundamental properties of occupation kernels and Liouville operators over RKHSs, applications to nonlinear system identification, study of the pre-inner product space that results from the action of the adjoint of a Liouville operator on an occupation kernel, and applications of the framework to solve motion tomography problems. The developed tools will be validated by solving identification and verification problems for unmanned ground, air, or underwater vehicles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自动化在社会许多领域的广泛使用已经产生了大量关于各种动力系统的历史行为的数据,例如无人驾驶航空器,海洋和地面车辆,生物系统和天气系统。该项目旨在开发新的算法来发现解释观察到的行为的管理规则(即,动力系统的轨迹。基础模型的发现虽然对分析和控制有用,但在计算上可能具有挑战性。例如,传统的建模方法依赖于导数,并且可能受到甚至使数值微分偏离轨道的少量测量噪声的阻碍。这样的方法将动态系统的输出的每个测量值视为单独的数据点。然后使用数值微分将数据点与基础模型关联起来。相反,在这个项目中,整个轨迹被视为一个感兴趣的单元。测量数据点的序列被视为该轨迹的采样的、有噪声的表示,并且使用数值积分与底层模型相关。假设将动力系统的轨迹作为数据的基本单位,可以产生更好的数据驱动技术来分析和控制动力系统,本项目旨在开发这种数据驱动的识别和验证技术。为了扩大研究的影响,该团队还将为本科生开发为期一周的研讨会,通过视频游戏教授数据科学和人工智能(AI)概念。为了促进机器学习的早期介绍,该团队还将开发适合在高中夏令营期间提供的人工智能研讨会版本。该项目的具体目标是开发一个新的理论框架来处理大量的时间序列数据,并应用该框架来产生用于非线性动力系统研究的强大而灵活的工具。在所提出的方法中,轨迹信息被嵌入到一个再生核希尔伯特空间(RKHS)通过所谓的占领内核。占领内核绑定到原来的动态通过一个密集定义的运营商,刘维运营商。占领核和刘维算子导致当代的方法,研究有限维非线性优化问题,提升到无限维线性规划的措施空间的非平凡的推广。所提出的方法有利于提升到线性规划的函数空间,而不是测量空间,因此,从函数论和逼近理论的工具成为可用于设计和分析的算法。该项目的具体目标包括:研究RKHS上的占位核和Liouville算子的基本性质,应用于非线性系统识别,研究由Liouville算子对占位核的伴随作用产生的预内积空间,以及该框架在解决运动层析成像问题中的应用。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robustness Verification of Deep Neural Networks using Star-Based Reachability Analysis with Variable-Length Time Series Input
  • DOI:
    10.48550/arxiv.2307.13907
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neelanjana Pal;Diego Manzanas Lopez;Taylor T. Johnson
  • 通讯作者:
    Neelanjana Pal;Diego Manzanas Lopez;Taylor T. Johnson
Decentralized Safe Control for Distributed Cyber-Physical Systems using Real-time Reachability Analysis
使用实时可达性分析的分布式信息物理系统的去中心化安全控制
Physics guided neural networks for spatio-temporal super-resolution of turbulent flows
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianshu Bao;Shengyu Chen;Taylor T. Johnson;P. Givi;S. Sammak;Xiaowei Jia
  • 通讯作者:
    Tianshu Bao;Shengyu Chen;Taylor T. Johnson;P. Givi;S. Sammak;Xiaowei Jia
Evaluation of Neural Network Verification Methods for Air-to-Air Collision Avoidance
  • DOI:
    10.2514/1.d0255
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Diego Manzanas Lopez;Taylor T. Johnson;Stanley Bak;Hoang-Dung Tran;Kerianne L. Hobbs
  • 通讯作者:
    Diego Manzanas Lopez;Taylor T. Johnson;Stanley Bak;Hoang-Dung Tran;Kerianne L. Hobbs
Zero-Shot Policy Transfer in Autonomous Racing: Reinforcement Learning vs Imitation Learning
自动赛车中的零样本策略迁移:强化学习与模仿学习
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taylor Johnson其他文献

QRIS: A Quantitative Reflectance Imaging System for the Pristine Sample of Asteroid Bennu
QRIS:小行星贝努原始样本的定量反射成像系统
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruby E. Fulford;D. Golish;D. Lauretta;D. DellaGiustina;Steve Meyer;Nicole Lunning;Christopher Snead;K. Righter;J. Dworkin;Carina A. Bennett;H. C. Connolly;Taylor Johnson;A. Polit;Pierre Haennecour;Andrew J. Ryan
  • 通讯作者:
    Andrew J. Ryan
Phytochemical Nrf2 activator attenuates skeletal muscle mitochondrial dysfunction and impaired proteostasis in a preclinical model of musculoskeletal aging
植物化学 Nrf2 激活剂可减轻肌肉骨骼衰老临床前模型中骨骼肌线粒体功能障碍和蛋白质稳态受损
  • DOI:
    10.1101/2021.06.11.448143
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Musci;K. Andrie;M. Walsh;Z. Valenti;Maryam F. Afzali;Taylor Johnson;Thomas E. Kail;Richard B Martinez;Tessa Nguyen;Joseph L. Sanford;Meredith D. Murrell;J. McCord;B. Hybertson;B. Miller;Qian Zhang;M. Javors;K. Santangelo;K. Hamilton
  • 通讯作者:
    K. Hamilton
Trends in Female Authorship in Orthopaedic Literature from 2002 to 2021
2002年至2021年骨科文献女性作者趋势
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasmine S. Ghattas;Cynthia Kyin;A. Grise;Jillian Glasser;Taylor Johnson;Katherine Druskovich;Lisa K. Cannada;Benjamin C. Service
  • 通讯作者:
    Benjamin C. Service
Quantifying hazards resilience by modeling infrastructure recovery as a resource constrained project scheduling problem
通过将基础设施恢复建模为资源受限的项目调度问题来量化灾害恢复力
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taylor Johnson;J. Leandro;D. Ahadzie
  • 通讯作者:
    D. Ahadzie
Racial Disparities Effect On Hospital Length Of Stay In Patients With Left Ventricular Assist Device-related Complications
种族差异对左心室辅助装置相关并发症患者住院时间的影响
  • DOI:
    10.1016/j.cardfail.2024.10.059
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Mariel Duchow;Kristina Menchaca;Gordon White;Taylor Johnson;Juzer Ali Asgar;Claire Lucero;Catherine Ostos;Waqas Ghumman
  • 通讯作者:
    Waqas Ghumman

Taylor Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taylor Johnson', 18)}}的其他基金

NSF Workshop on Safety and Trust in Artificial Intelligence Enabled Systems
NSF 人工智能支持系统安全与信任研讨会
  • 批准号:
    2231543
  • 财政年份:
    2022
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track II: Enhancing the Neural Network Verification (NNV) Tool for Industrial Applications
合作研究:FMitF:轨道 II:增强工业应用的神经网络验证 (NNV) 工具
  • 批准号:
    2220426
  • 财政年份:
    2022
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
FMitF: Track I: Generative Neural Network Verification in Medical Imaging Analysis
FMITF:第一轨:医学影像分析中的生成神经网络验证
  • 批准号:
    2220401
  • 财政年份:
    2022
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Fuzzing Cyber-Physical System Development Tool Chains with Deep Learning (DeepFuzz-CPS)
SHF:小型:协作研究:利用深度学习模糊网络物理系统开发工具链 (DeepFuzz-CPS)
  • 批准号:
    1910017
  • 财政年份:
    2019
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
FMitF: Track II: Hybrid and Dynamical Systems Verification on the CPS-VO
FMITF:轨道 II:CPS-VO 上的混合动力系统验证
  • 批准号:
    1918450
  • 财政年份:
    2019
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
SHF: Small: Automating Improvement of Development Environments for Cyber-Physical Systems (AIDE-CPS)
SHF:小型:自动改进网络物理系统的开发环境 (AIDE-CPS)
  • 批准号:
    1736323
  • 财政年份:
    2016
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
CRII: CPS: Safe Cyber-Physical Systems Upgrades
CRII:CPS:安全网络物理系统升级
  • 批准号:
    1713253
  • 财政年份:
    2016
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
CRII: CPS: Safe Cyber-Physical Systems Upgrades
CRII:CPS:安全网络物理系统升级
  • 批准号:
    1464311
  • 财政年份:
    2015
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
SHF: Small: Automating Improvement of Development Environments for Cyber-Physical Systems (AIDE-CPS)
SHF:小型:自动改进网络物理系统的开发环境 (AIDE-CPS)
  • 批准号:
    1527398
  • 财政年份:
    2015
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant

相似国自然基金

复杂电子产品超精密加工及检测关键技术研究与应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于合成生物学的动物底盘品种优化及中试应用研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
运用组学整合技术探索萆薢分清散联合化疗治疗晚期胰腺癌的临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
九里香等提取物多靶向制剂抗肺癌的作用及机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
升血小板方治疗原发免疫性血小板减少症的临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
八髎穴微波热疗在女性膀胱过度活动症治疗中的价值研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于 miR-455-5p 介导的氧化应激机制探讨糖尿病视网膜病变中医分型治疗的临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于 UPLC-Q-TOF-MS/MS 分析的 异功散活性成分评价及提取工艺研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
无创电针对于痉挛型双瘫脑 瘫患儿的有效性与安全性研究:一项随机 单盲前瞻性队列研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
弹压式手法与体外冲击波治疗肱骨外上髁炎的对比研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
  • 批准号:
    2309778
  • 财政年份:
    2023
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
  • 批准号:
    2309777
  • 财政年份:
    2023
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Operator theoretic methods for identification and verification of dynamical systems
合作研究:动力系统识别和验证的算子理论方法
  • 批准号:
    2027999
  • 财政年份:
    2020
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Operator theoretic methods for identification and verification of dynamical systems
合作研究:动力系统识别和验证的算子理论方法
  • 批准号:
    2027976
  • 财政年份:
    2020
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Scalable Robot Autonomy through Remote Operator Assistance and Lifelong Learning
NRI:协作研究:通过远程操作员协助和终身学习实现可扩展的机器人自主性
  • 批准号:
    1637562
  • 财政年份:
    2016
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Scalable Robot Autonomy through Remote Operator Assistance and Lifelong Learning
NRI:协作研究:通过远程操作员协助和终身学习实现可扩展的机器人自主性
  • 批准号:
    1638107
  • 财政年份:
    2016
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Bellman function, Harmonic Analysis and Operator Theory
合作研究:贝尔曼函数、调和分析和算子理论
  • 批准号:
    1249196
  • 财政年份:
    2012
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: GPOTS Special Meetings 2009/2010; High-Altitude Training for the Next Generation of Operator Theorists and Operator Algebraists
合作研究:GPOTS 特别会议 2009/2010;
  • 批准号:
    0852495
  • 财政年份:
    2009
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
SM: Collaborative Research: GPOTS Special Meetings 2009/2010 - High-Altitude Training for the Next Generation of Operator Theorists and Operator Algebraists
SM:协作研究:GPOTS 特别会议 2009/2010 - 下一代算子理论家和算子代数学家的高空培训
  • 批准号:
    0852527
  • 财政年份:
    2009
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Bellman function, Harmonic Analysis and Operator Theory
合作研究:贝尔曼函数、调和分析和算子理论
  • 批准号:
    0800876
  • 财政年份:
    2008
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了