FMitF: Track I: Generative Neural Network Verification in Medical Imaging Analysis

FMITF:第一轨:医学影像分析中的生成神经网络验证

基本信息

  • 批准号:
    2220401
  • 负责人:
  • 金额:
    $ 74.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Medical images, such as computed tomography (CT) and magnetic resonance imaging (MRI) scans, are routinely transformed and analyzed using computers and software. Medical images are increasingly processed and analyzed with artificial-intelligence and machine-learning methods, such as deep neural networks. In such safety-critical domains, stringent guarantees on the behaviors of these machine-learning methods are essential, but many recent studies have shown risks with these methods, such as lack of robustness and bias. Neural-network formal verification is emerging as an approach to provide guarantees on these machine-learning models to precisely characterize their behaviors. This project's novelties are to develop a neural-network formal-specification and -verification framework for medical-image analysis tasks, apply it to ensure specifications across the medical-image-analysis technology stack, and evaluate it on two specific medical-imaging analysis tasks. The first image-analysis task is the segmentation of brain lesions from MRIs of multiple-sclerosis patients, which is the process of automatically characterizing different regions of the MRIs into corresponding anatomic structures. The second image-analysis task is image synthesis for denoising optical-coherence-tomography (OCT) scans of the retina. The project's impacts are to enable medical-imaging analysis by enhancing confidence in the machine-learning models through formal verification. Beyond the development and application of these formal methods to medical-imaging analysis, the results of this project may enhance trustworthiness in other domains, such as perception and sensing components in autonomous systems.Most neural-network verification methods developed so far are applicable only to simple computer-vision tasks, such as image classification, whereas medical image analysis typically requires more sophisticated generative computer-vision methods to solve more sophisticated tasks, such as semantic segmentation, instance segmentation, and image synthesis. Developing formal methods for these generative computer-vision tasks in the context of medical-imaging analysis is the core of this project. The first major objective of the project is to develop a robustness-specification framework, building on robustness to adversarial perturbations, specification mining, and metrics from computer vision used for generative tasks. The second major objective is to develop the formal-verification methods, building on reachability analysis of neural networks, specifically developing reachability methods for up-sampling layers used in generative models. The third major objective is to consider the robustness of generative models for image synthesis, such as those trained through generative-adversarial-network (GAN) processes. The fourth major objective is to evaluate these specification and verification methods on the MS lesion segmentation and OCT image-synthesis denoising tasks. The researchers will organize relevant competitions and challenges, such as continuing the Verification of Neural Networks Competition (VNN-COMP) and the IEEE ISBI Longitudinal MS Lesion Segmentation Challenge, and will develop benchmarks for the formal-methods, machine-learning, computer-vision, and medical-imaging-analysis research communities based on the research and results of this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
医学图像,如计算机断层扫描(CT)和磁共振成像(MRI)扫描,通常使用计算机和软件进行转换和分析。医学图像越来越多地使用人工智能和机器学习方法(如深度神经网络)进行处理和分析。在这些安全关键领域,对这些机器学习方法的行为进行严格保证是必不可少的,但最近的许多研究表明这些方法存在风险,例如缺乏鲁棒性和偏差。神经网络形式化验证是一种新兴的方法,可以为这些机器学习模型提供保证,以精确地描述其行为。该项目的新颖之处是为医学图像分析任务开发神经网络形式规范和验证框架,将其应用于确保医学图像分析技术堆栈的规范,并在两个特定的医学成像分析任务上对其进行评估。第一个图像分析任务是从多发性硬化患者的MRI分割脑病变,这是将MRI的不同区域自动表征为相应解剖结构的过程。第二个图像分析任务是图像合成,用于对视网膜的光学相干断层扫描(OCT)进行去噪。该项目的影响是通过正式验证增强对机器学习模型的信心,从而实现医学成像分析。除了这些形式化方法在医学成像分析中的开发和应用之外,该项目的结果还可以增强其他领域的可信度,例如自主系统中的感知和传感组件。迄今为止开发的大多数神经网络验证方法仅适用于简单的计算机视觉任务,例如图像分类,而医学图像分析通常需要更复杂的生成计算机视觉方法来解决更复杂的任务,例如语义分割、实例分割和图像合成。在医学成像分析的背景下为这些生成计算机视觉任务开发正式方法是该项目的核心。该项目的第一个主要目标是开发一个鲁棒性规范框架,建立在对抗性扰动的鲁棒性,规范挖掘和用于生成任务的计算机视觉指标的基础上。第二个主要目标是开发形式验证方法,建立在神经网络的可达性分析的基础上,特别是开发生成模型中使用的上采样层的可达性方法。第三个主要目标是考虑图像合成的生成模型的鲁棒性,例如通过生成对抗网络(GAN)过程训练的模型。第四个主要目标是评估MS病变分割和OCT图像合成去噪任务的这些规范和验证方法。研究人员将组织相关的竞赛和挑战,比如继续进行神经网络验证竞赛(VNN-COMP)和IEEE ISBI纵向MS病变分割挑战赛,并将为形式方法,机器学习,计算机视觉,和医学成像该奖项反映了NSF的法定使命,并被认为是值得的。通过使用基金会的知识价值和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robustness Verification of Deep Neural Networks using Star-Based Reachability Analysis with Variable-Length Time Series Input
  • DOI:
    10.48550/arxiv.2307.13907
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neelanjana Pal;Diego Manzanas Lopez;Taylor T. Johnson
  • 通讯作者:
    Neelanjana Pal;Diego Manzanas Lopez;Taylor T. Johnson
Towards Understanding and Enhancing Robustness of Deep Learning Models against Malicious Unlearning Attacks
First three years of the international verification of neural networks competition (VNN-COMP)
  • DOI:
    10.1007/s10009-023-00703-4
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Christopher Brix;Mark Niklas Muller;Stanley Bak;Taylor T. Johnson;Changliu Liu
  • 通讯作者:
    Christopher Brix;Mark Niklas Muller;Stanley Bak;Taylor T. Johnson;Changliu Liu
NNV 2.0: The Neural Network Verification Tool
NNV 2.0:神经网络验证工具
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Diego Manzanas Lopez;Sung Woo Choi;Hoang-Dung Tran;Taylor T. Johnson
  • 通讯作者:
    Taylor T. Johnson
Guiding Federated Learning with Inferenced Formal Logic Properties
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taylor Johnson其他文献

QRIS: A Quantitative Reflectance Imaging System for the Pristine Sample of Asteroid Bennu
QRIS:小行星贝努原始样本的定量反射成像系统
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruby E. Fulford;D. Golish;D. Lauretta;D. DellaGiustina;Steve Meyer;Nicole Lunning;Christopher Snead;K. Righter;J. Dworkin;Carina A. Bennett;H. C. Connolly;Taylor Johnson;A. Polit;Pierre Haennecour;Andrew J. Ryan
  • 通讯作者:
    Andrew J. Ryan
Phytochemical Nrf2 activator attenuates skeletal muscle mitochondrial dysfunction and impaired proteostasis in a preclinical model of musculoskeletal aging
植物化学 Nrf2 激活剂可减轻肌肉骨骼衰老临床前模型中骨骼肌线粒体功能障碍和蛋白质稳态受损
  • DOI:
    10.1101/2021.06.11.448143
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Musci;K. Andrie;M. Walsh;Z. Valenti;Maryam F. Afzali;Taylor Johnson;Thomas E. Kail;Richard B Martinez;Tessa Nguyen;Joseph L. Sanford;Meredith D. Murrell;J. McCord;B. Hybertson;B. Miller;Qian Zhang;M. Javors;K. Santangelo;K. Hamilton
  • 通讯作者:
    K. Hamilton
Trends in Female Authorship in Orthopaedic Literature from 2002 to 2021
2002年至2021年骨科文献女性作者趋势
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasmine S. Ghattas;Cynthia Kyin;A. Grise;Jillian Glasser;Taylor Johnson;Katherine Druskovich;Lisa K. Cannada;Benjamin C. Service
  • 通讯作者:
    Benjamin C. Service
Quantifying hazards resilience by modeling infrastructure recovery as a resource constrained project scheduling problem
通过将基础设施恢复建模为资源受限的项目调度问题来量化灾害恢复力
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taylor Johnson;J. Leandro;D. Ahadzie
  • 通讯作者:
    D. Ahadzie
Racial Disparities Effect On Hospital Length Of Stay In Patients With Left Ventricular Assist Device-related Complications
种族差异对左心室辅助装置相关并发症患者住院时间的影响
  • DOI:
    10.1016/j.cardfail.2024.10.059
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Mariel Duchow;Kristina Menchaca;Gordon White;Taylor Johnson;Juzer Ali Asgar;Claire Lucero;Catherine Ostos;Waqas Ghumman
  • 通讯作者:
    Waqas Ghumman

Taylor Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taylor Johnson', 18)}}的其他基金

NSF Workshop on Safety and Trust in Artificial Intelligence Enabled Systems
NSF 人工智能支持系统安全与信任研讨会
  • 批准号:
    2231543
  • 财政年份:
    2022
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track II: Enhancing the Neural Network Verification (NNV) Tool for Industrial Applications
合作研究:FMitF:轨道 II:增强工业应用的神经网络验证 (NNV) 工具
  • 批准号:
    2220426
  • 财政年份:
    2022
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Operator theoretic methods for identification and verification of dynamical systems
合作研究:动力系统识别和验证的算子理论方法
  • 批准号:
    2028001
  • 财政年份:
    2020
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Fuzzing Cyber-Physical System Development Tool Chains with Deep Learning (DeepFuzz-CPS)
SHF:小型:协作研究:利用深度学习模糊网络物理系统开发工具链 (DeepFuzz-CPS)
  • 批准号:
    1910017
  • 财政年份:
    2019
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
FMitF: Track II: Hybrid and Dynamical Systems Verification on the CPS-VO
FMITF:轨道 II:CPS-VO 上的混合动力系统验证
  • 批准号:
    1918450
  • 财政年份:
    2019
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
SHF: Small: Automating Improvement of Development Environments for Cyber-Physical Systems (AIDE-CPS)
SHF:小型:自动改进网络物理系统的开发环境 (AIDE-CPS)
  • 批准号:
    1736323
  • 财政年份:
    2016
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
CRII: CPS: Safe Cyber-Physical Systems Upgrades
CRII:CPS:安全网络物理系统升级
  • 批准号:
    1713253
  • 财政年份:
    2016
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
CRII: CPS: Safe Cyber-Physical Systems Upgrades
CRII:CPS:安全网络物理系统升级
  • 批准号:
    1464311
  • 财政年份:
    2015
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
SHF: Small: Automating Improvement of Development Environments for Cyber-Physical Systems (AIDE-CPS)
SHF:小型:自动改进网络物理系统的开发环境 (AIDE-CPS)
  • 批准号:
    1527398
  • 财政年份:
    2015
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant

相似国自然基金

离散动力系统余维 3 退化的强共振分岔理论
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
低轨道星间激光通信光纤放大器
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
城轨交通弹性车轮研制及应用
  • 批准号:
    2025JK2070
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向轨道交通智能监测系统的低频能量收集技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
少样本条件下基于声发射的道岔区轨道 损伤识别研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于轨道物流的智能搬运机器人技术装备研发
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
低轨星座定位定轨理论与技术
  • 批准号:
    JCZRQT202500073
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
中国南海沉积记录的构造-轨道尺度中新世气候转型期东亚夏季风的演变
  • 批准号:
    JCZRQN202500090
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
发展非平衡多轨道FLEX+DMFT理论方法研究低维强关联电子系统
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
自旋轨道力矩驱动非共线反铁磁Mn3Sn磁矩翻转研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
  • 批准号:
    2327349
  • 财政年份:
    2024
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
  • 批准号:
    2327422
  • 财政年份:
    2024
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 74.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了