Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
基本信息
- 批准号:2309777
- 负责人:
- 金额:$ 15.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The first-principle-based approach has achieved considerable success in numerous engineering and scientific disciplines, including fluid and solid mechanics, electromagnetism, and more. Among its most significant applications are partial differential equations (PDEs) which, in conjunction with their analysis and numerical algorithms, represent some of the most powerful tools humanity has ever developed for understanding the material world. However, increasingly complex mathematical models arising from physics, biology, and chemistry challenge the efficacy of first-principle-based approaches for solving practical problems, such as those in fluid turbulence, molecular dynamics, and large-scale inverse problems. A major obstacle for numerical algorithms is the so-called curse of dimensionality. Fueled by advances in Graphics Processing Unit and Tensor Processing Unit general-purpose computing, deep neural networks (DNNs) and deep learning approaches excel in combating the curse of dimensionality and demonstrate immense potential for solving complex problems in science and engineering. This project aims to investigate how mathematical structures within a problem can inform the design and analysis of innovative DNNs, particularly in the context of inverse problems where unknown parameters are inferred from measurements, such as electrical impedance tomography. Additionally, the programming component in this project will focus on training the next generation of computational mathematicians.The Operator Learning (OpL) framework in deep learning provides a unique perspective for tackling challenging and potentially ill-posed PDE-based problems. This project will explore the potential of OpL to mitigate the ill-posedness of many inverse problems, as its powerful approximation capability combined with offline training and online prediction properties lead to high-quality, rapid reconstructions. The project seeks to bridge OpL and classical methodologies by integrating mathematical structures from classical problem-solving approaches into DNN architectures. In particular, the project will shed light on the mathematical properties of the attention mechanism, the backbone of state-of-the-art DNN Transformers, such as those in GPT and AlphaFold 2. Furthermore, the project will examine the flexibility of attention neural architectures, enabling the fusion of attention mechanisms with important methodologies in applied mathematics, such as Galerkin projection or Fredholm integral equations, in accordance with the a priori mathematical structure of a problem. This project will also delve into the mathematical foundations of attention through the lens of spectral theory in Hilbert spaces, seeking to understand how the emblematic query-key-value architecture contributes to the rich representational power and diverse approximation capabilities of Transformers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于第一性原理的方法在许多工程和科学学科中取得了相当大的成功,包括流体和固体力学,电磁学等。其中最重要的应用是偏微分方程(PDE),它与它们的分析和数值算法相结合,代表了人类为理解物质世界而开发的一些最强大的工具。然而,越来越复杂的数学模型所产生的物理,生物学和化学的挑战的第一原理为基础的方法来解决实际问题,如在流体湍流,分子动力学和大规模的逆问题的有效性。数值算法的一个主要障碍是所谓的维数灾难。 在图形处理单元和张量处理单元通用计算的进步的推动下,深度神经网络(DNN)和深度学习方法在对抗维度灾难方面表现出色,并在解决科学和工程中的复杂问题方面表现出巨大的潜力。该项目旨在研究问题中的数学结构如何为创新DNN的设计和分析提供信息,特别是在从测量中推断未知参数的逆问题中,例如电阻抗断层扫描。此外,该项目的编程部分将专注于培养下一代计算数学家。深度学习中的运算符学习(OpL)框架为解决具有挑战性和潜在不适定的基于偏微分方程的问题提供了独特的视角。该项目将探索OpL减轻许多逆问题的不适定性的潜力,因为其强大的近似能力与离线训练和在线预测特性相结合,可以实现高质量的快速重建。该项目旨在通过将经典问题解决方法中的数学结构集成到DNN架构中,来弥合OpL和经典方法。特别是,该项目将揭示注意力机制的数学特性,这是最先进的DNN Transformers的骨干,例如GPT和AlphaFold 2中的那些。 此外,该项目将研究注意力神经结构的灵活性,使注意力机制与应用数学中的重要方法融合,如Galerkin投影或Fredholm积分方程,根据问题的先验数学结构。这个项目还将通过希尔伯特空间中光谱理论的透镜深入研究注意力的数学基础,寻求理解象征性的查询-键-价值体系结构为《变形金刚》提供了丰富的代表性和多样的近似能力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响评审进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruchi Guo其他文献
Design, Analysis, and Application of Immersed Finite Element Methods
- DOI:
- 发表时间:
2019-06 - 期刊:
- 影响因子:0
- 作者:
Ruchi Guo - 通讯作者:
Ruchi Guo
A Linear Immersed Finite Element Space Defined by Actual Interface Curve on Triangular Meshes
- DOI:
- 发表时间:
2017-03 - 期刊:
- 影响因子:0
- 作者:
Ruchi Guo - 通讯作者:
Ruchi Guo
Solving Parabolic Moving Interface Problems with Dynamical Immersed Spaces on Unfitted Meshes: Fully Discrete Analysis
- DOI:
10.1137/20m133508x - 发表时间:
2020-04 - 期刊:
- 影响因子:0
- 作者:
Ruchi Guo - 通讯作者:
Ruchi Guo
Design and Kinematic Analysis of a 6-DoF Parallel Robot for Image-Guided Surgery
用于图像引导手术的六自由度并联机器人的设计和运动学分析
- DOI:
10.1109/cac59555.2023.10450921 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xiyu Wang;Yongyin Ye;Zhijie Pan;Jiangnan Wang;Ruchi Guo;Mengtang Li - 通讯作者:
Mengtang Li
On the maximum angle conditions for polyhedra with virtual element methods
- DOI:
10.48550/arxiv.2212.07241 - 发表时间:
2022-12 - 期刊:
- 影响因子:0
- 作者:
Ruchi Guo - 通讯作者:
Ruchi Guo
Ruchi Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 15.48万 - 项目类别:
Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 15.48万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 15.48万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327011 - 财政年份:2023
- 资助金额:
$ 15.48万 - 项目类别:
Standard Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
- 批准号:
2311058 - 财政年份:2023
- 资助金额:
$ 15.48万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
- 批准号:
2324396 - 财政年份:2023
- 资助金额:
$ 15.48万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
$ 15.48万 - 项目类别:
Standard Grant
Collaborative Research: Using Complex Systems Theory and Methods to Gauge the Gains and Persisting Challenges of Broadening Participation Initiatives
合作研究:利用复杂系统理论和方法来衡量扩大参与计划的收益和持续的挑战
- 批准号:
2301197 - 财政年份:2023
- 资助金额:
$ 15.48万 - 项目类别:
Standard Grant
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
- 批准号:
2304207 - 财政年份:2023
- 资助金额:
$ 15.48万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304852 - 财政年份:2023
- 资助金额:
$ 15.48万 - 项目类别:
Standard Grant