Collaborative Research: PPoSS: Planning:S3-IoT: Design and Deployment of Scalable, Secure, and Smart Mission-Critical IoT Systems

协作研究:PPoSS:规划:S3-IoT:可扩展、安全和智能任务关键型物联网系统的设计和部署

基本信息

  • 批准号:
    2028740
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

The growing capabilities of sensing, computing and communication devices are leading to an explosion of Internet of Things (IoT) infrastructures. In the meantime, advances in technologies such as autonomous systems and artificial intelligence promise enormous economic and societal benefits. Naturally, it is desirable to deploy these technologies in IoT infrastructures. However, such deployments present daunting changes for increasingly scaled-up IoT infrastructures in mission-critical applications such as medical, energy, transportation, and industrial-automation systems. These challenges stem from several major aspects in terms of scalability. First, the number of edge devices can be enormous, often in the order of billions, which makes centralized management infeasible. Second, there are multiple layers of heterogeneity. An IoT system can consist of heterogeneous computing subsystems; each subsystem can have heterogeneous computing devices; and each single device can be composed of different kinds of computing components. Third, mission-critical applications have stringent requirements in correctness, resilience, timeliness, security and safety. It is difficult for a large-scale IoT system to satisfy these requirements due to increasing opportunities for adversarial activity.To tackle these challenges, this project aims to develop a cross-layer and full hardware/software stack solution, referred to as the S3-IoT framework, for the design and deployment of scalable, secure, and smart mission-critical IoT systems. The S3-IoT framework will span three different computation layers, including data centers, gateways/aggregators, and edge devices, and cover four research foci, i.e., resource management, security and privacy, computer architecture/systems, and algorithms. In this planning project, an initial version of the S3-IoT framework will be developed. The S3-IoT framework will (i) leverage a layered structure - data centers, gateways/aggregators, and edge devices to accommodate the huge number of edge devices; (ii) develop cross-layer techniques to deal with the heterogeneity among these layers; and (iii) propose hardware and software co-design approaches that embrace the heterogeneity among computing components to improve the performance of all components within an individual layer. The S3-IoT framework will be evaluated by developing simulators with the layered structure as well as a small scale, comprehensive experimental testbed. The success of this planning project will lead to a convincing path to effective deployment of mission-critical IoT systems and infrastructures, particularly in terms of improving resilience to environmental uncertainties, system internal errors and faults, and malicious attacks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传感、计算和通信设备的能力不断增长,导致物联网(IoT)基础设施的爆炸式增长。与此同时,自主系统和人工智能等技术的进步有望带来巨大的经济和社会效益。当然,希望在物联网基础设施中部署这些技术。然而,这种部署为医疗、能源、交通和工业自动化系统等关键任务应用中日益扩大的物联网基础设施带来了令人生畏的变化。这些挑战来自可扩展性方面的几个主要方面。首先,边缘设备的数量可能非常庞大,通常在数十亿的数量级,这使得集中管理变得不可行。其次,存在多层次的异质性。物联网系统可以由异构计算子系统组成;每个子系统可以具有异构计算设备;并且每个单个设备可以由不同类型的计算组件组成。第三,关键任务应用程序在正确性、弹性、及时性、安全性和安全性方面有严格的要求。面对日益增多的对抗性活动,大规模物联网系统很难满足这些需求。为了应对这些挑战,本项目旨在开发一个跨层的全软硬件栈解决方案,称为S3-IoT框架,用于设计和部署可扩展、安全和智能的关键任务物联网系统。S3-IoT框架将跨越三个不同的计算层,包括数据中心,网关/聚合器和边缘设备,并涵盖四个研究重点,即,资源管理、安全和隐私、计算机体系结构/系统和算法。在这个规划项目中,将开发S3-IoT框架的初始版本。S3-IoT框架将(i)利用分层结构-数据中心,网关/聚合器和边缘设备来容纳大量的边缘设备;(ii)开发跨层技术来处理这些层之间的异构性;(iii)提出硬件和软件协同设计方法,包括计算组件之间的异构性,以提高单个层内所有组件的性能。S3-IoT框架将通过开发具有分层结构的模拟器以及小规模综合实验测试平台进行评估。该规划项目的成功将为关键任务物联网系统和基础设施的有效部署提供令人信服的途径,特别是在提高对环境不确定性、系统内部错误和故障以及恶意攻击的弹性方面。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-time Attack-recovery for Cyber-physical Systems Using Linear-quadratic Regulator
  • DOI:
    10.1145/3477010
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin Zhang;Pengyuan Lu;Fanxin Kong;Xin Chen;O. Sokolsky;Insup Lee
  • 通讯作者:
    Lin Zhang;Pengyuan Lu;Fanxin Kong;Xin Chen;O. Sokolsky;Insup Lee
Adaptive window-based sensor attack detection for cyber-physical systems
Real-Time Adaptive Sensor Attack Detection in Autonomous Cyber-Physical Systems
自主网络物理系统中的实时自适应传感器攻击检测
Real-Time Attack-Recovery for Cyber-Physical Systems Using Linear Approximations
  • DOI:
    10.1109/rtss49844.2020.00028
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin Zhang;Xin Chen;Fanxin Kong;A. Cárdenas
  • 通讯作者:
    Lin Zhang;Xin Chen;Fanxin Kong;A. Cárdenas
Recovery-by-Learning: Restoring Autonomous Cyber-physical Systems from Sensor Attacks
通过学习恢复:从传感器攻击中恢复自主网络物理系统
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fanxin Kong其他文献

Validation of estimating left ventricular ejection fraction by mitral annular displacement derived from speckle‐tracking echocardiography: A neglected method for evaluating left ventricular systolic function
通过斑点跟踪超声心动图衍生的二尖瓣环位移估计左心室射血分数的验证:一种被忽视的评估左心室收缩功能的方法
  • DOI:
    10.1002/jcu.22987
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Yonghuai Wang;Yan Zhang;Guangyuan Li;Fanxin Kong;Zhengyu Guan;Jun Yang;Chunyan Ma
  • 通讯作者:
    Chunyan Ma
Recovery-based Model Predictive Control for Cascade Mitigation under Cyber-Physical Attacks
基于恢复的模型预测控制,用于网络物理攻击下的级联缓解
Support effect on methane combustion over iridium catalysts: Unraveling the metal-support interaction mechanism
铱催化剂上甲烷燃烧的支持作用:揭示金属-载体相互作用机制
  • DOI:
    10.1016/j.jcis.2025.01.048
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    9.700
  • 作者:
    Lei Chen;Lijie Zhang;Chuanhui Wang;Fanxin Kong;Huimei Duan;Dongjiang Yang
  • 通讯作者:
    Dongjiang Yang
Applying Machine Learning in Designing Distributed Auction for Multi-agent Task Allocation with Budget Constraints
应用机器学习设计分布式拍卖以实现预算约束下的多代理任务分配
CPSim: Simulation Toolbox for Security Problems in Cyber-Physical Systems
CPSim:网络物理系统安全问题的仿真工具箱

Fanxin Kong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fanxin Kong', 18)}}的其他基金

Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
  • 批准号:
    2333980
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
  • 批准号:
    2143256
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
EAGER: Techniques for Deploying Mission Critical IoT Applications
EAGER:部署关键任务物联网应用程序的技术
  • 批准号:
    1720579
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316177
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316235
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2406572
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316159
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了