Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
基本信息
- 批准号:2406572
- 负责人:
- 金额:$ 94.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project investigates a completely new cross-disciplinary concept of “Computational Screening and Surveillance (CSS)” that utilizes edge learning to detect early indicators of diseases, and monitor health changes in both individuals and populations. CSS analyzes and interprets continuous and heterogeneous physical and physiologic sensing data streams of human subjects to produce real-time information, knowledge, and insights about their health status. The project’s novelty is a data-driven paradigm that revolutionizes the understanding, prediction, intervention, treatment, and management of acute/infectious, chronic physical and psychological diseases. The project’s impacts are enormous social and economic benefits to individuals, organizations, and the healthcare system: early detection, preemptive intervention and management can lead to greatly improved quality of care, and huge savings for multiple diseases each costing hundreds of billions of dollars every year.The investigators design, develop and evaluate principles and solutions for CSS enabled by extreme-scale edge learning spanning four dimensions: data modalities, health conditions and data patterns, Artificial Intelligence/Machine Learning (AI/ML) algorithms and models, and individuals/populations. The design is guided by four principles: exploit scale and heterogeneity, design for uncertainty, privacy as a first-class citizen, and faults, attacks as a norm. The investigators will 1) design AI/ML algorithms for learning data patterns and correlations for diverse health conditions in both individuals and populations at extreme scales; 2) quantify theoretical bounds on the tradeoffs between security, privacy protection, and learning accuracy in order to protect against various attacks on data and models at both the edge and cloud; 3) develop programming abstractions for automated exploration of competing AI/ML methods under uncertainty, and system mechanisms to protect stream processing integrity against sensitive data disclosure and faulty/malicious analytics; and 4) devise neural architectures and accelerators for computation efficiency at the constrained edge, data efficiency using limited training sets, and human efficiency utilizing AutoML.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了一个全新的跨学科概念“计算筛查和监测(CSS)”,该概念利用边缘学习来检测疾病的早期指标,并监测个人和人群的健康变化。CSS分析和解释人类受试者的连续和异构的物理和生理传感数据流,以产生有关其健康状况的实时信息,知识和见解。该项目的新奇在于数据驱动的范式,它彻底改变了对急性/传染性、慢性生理和心理疾病的理解、预测、干预、治疗和管理。该项目的影响是巨大的社会和经济效益,为个人,组织和医疗保健系统:早期发现,先发制人的干预和管理可以大大提高护理质量,并节省大量的费用,每年花费数千亿美元的多种疾病。研究人员设计,开发和评估CSS的原则和解决方案,通过跨四个维度的极端规模边缘学习实现:数据模式、健康状况和数据模式、人工智能/机器学习(AI/ML)算法和模型以及个人/群体。该设计遵循四个原则:利用规模和异质性,为不确定性设计,隐私作为一等公民,错误,攻击作为一种规范。研究人员将:1)设计AI/ML算法,用于在极端规模下学习个人和人群中各种健康状况的数据模式和相关性; 2)量化安全性、隐私保护和学习准确性之间权衡的理论界限,以防止对边缘和云的数据和模型的各种攻击; 3)开发编程抽象,用于在不确定性下自动探索竞争性AI/ML方法,以及保护流处理完整性免受敏感数据泄露和错误/恶意分析的系统机制;以及4)设计神经体系结构和加速器,用于约束边缘处的计算效率,使用有限训练集的数据效率,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ting Wang其他文献
Insight into the Al/N-GaN barrier property to realize high quality n-type Ohmic contact
洞察Al/N-GaN势垒特性,实现高质量n型欧姆接触
- DOI:
10.1016/j.jallcom.2019.152855 - 发表时间:
2020-03 - 期刊:
- 影响因子:6.2
- 作者:
Ting Wang;Zhihua Xiong;Juanli Zhao;Ning Wu;Kun Du;Mingbin Zhou;Lei Ao - 通讯作者:
Lei Ao
A Deep Learning Approach for Automated Sleep-Wake Scoring in Pre-Clinical Animal Models
临床前动物模型中自动睡眠-觉醒评分的深度学习方法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3
- 作者:
V. Svetnik;Ting Wang;Yuting Xu;Bryan J Hansen;Steven V. Fox - 通讯作者:
Steven V. Fox
Comparative Assessment of Polycyclic Aromatic Hydrocarbons ( PAHS ) and Heavy Metals in Catfish from Rivers , Swamp and Commercial Fish Ponds in Oil and Non-Oil Polluted Areas in Rivers And Anambra States
河流和阿南布拉州石油和非石油污染地区河流、沼泽和商业鱼塘中多环芳烃(PAHS)和重金属的比较评估
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jijun Sun;Ting Wang;Jiang Bian;Weiyun Shi;Qingguo Ruan - 通讯作者:
Qingguo Ruan
Dural arteriovenous fistulas with perimedullary venous drainage successfully managed via endovascular electrocoagulation: a case report.
通过血管内电凝成功治疗髓周静脉引流的硬脑膜动静脉瘘:病例报告。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2
- 作者:
Ting Wang;S. Richard;C. Zhang;Chaohua Wang;Xiaodong Xie - 通讯作者:
Xiaodong Xie
The Mental Health of Older Buddhists After the Wenchuan Earthquake
汶川地震后老年佛教徒的心理健康状况
- DOI:
10.1007/s11089-011-0402-3 - 发表时间:
2012 - 期刊:
- 影响因子:0.8
- 作者:
Xumei Wang;Ting Wang;B. Han - 通讯作者:
B. Han
Ting Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ting Wang', 18)}}的其他基金
CAREER: Trustworthy Machine Learning from Untrusted Models
职业:从不可信模型中进行值得信赖的机器学习
- 批准号:
2405136 - 财政年份:2023
- 资助金额:
$ 94.27万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2119331 - 财政年份:2021
- 资助金额:
$ 94.27万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Attack-Agnostic Defenses against Adversarial Inputs in Learning Systems
SaTC:核心:小:针对学习系统中的对抗性输入的与攻击无关的防御
- 批准号:
1953813 - 财政年份:2019
- 资助金额:
$ 94.27万 - 项目类别:
Standard Grant
CAREER: Trustworthy Machine Learning from Untrusted Models
职业:从不可信模型中进行值得信赖的机器学习
- 批准号:
1953893 - 财政年份:2019
- 资助金额:
$ 94.27万 - 项目类别:
Continuing Grant
III: Small: Usable Interpretability
III:小:可用的可解释性
- 批准号:
1951729 - 财政年份:2019
- 资助金额:
$ 94.27万 - 项目类别:
Continuing Grant
III: Small: Usable Interpretability
III:小:可用的可解释性
- 批准号:
1910546 - 财政年份:2019
- 资助金额:
$ 94.27万 - 项目类别:
Continuing Grant
CAREER: Trustworthy Machine Learning from Untrusted Models
职业:从不可信模型中进行值得信赖的机器学习
- 批准号:
1846151 - 财政年份:2019
- 资助金额:
$ 94.27万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Attack-Agnostic Defenses against Adversarial Inputs in Learning Systems
SaTC:核心:小:针对学习系统中的对抗性输入的与攻击无关的防御
- 批准号:
1718787 - 财政年份:2017
- 资助金额:
$ 94.27万 - 项目类别:
Standard Grant
CRII: SaTC: Re-Envisioning Contextual Services and Mobile Privacy in the Era of Deep Learning
CRII:SaTC:重新构想深度学习时代的上下文服务和移动隐私
- 批准号:
1566526 - 财政年份:2016
- 资助金额:
$ 94.27万 - 项目类别:
Standard Grant
Engineering Initiation Award: Effects of Curvature, Pressure, Gradient, and Freestream Turbulence on Reynolds Analogy in Transitional Boundary Layer Flow
工程启动奖:曲率、压力、梯度和自由流湍流对过渡边界层流雷诺类比的影响
- 批准号:
8708843 - 财政年份:1987
- 资助金额:
$ 94.27万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316161 - 财政年份:2023
- 资助金额:
$ 94.27万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316176 - 财政年份:2023
- 资助金额:
$ 94.27万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316158 - 财政年份:2023
- 资助金额:
$ 94.27万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 94.27万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316203 - 财政年份:2023
- 资助金额:
$ 94.27万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316177 - 财政年份:2023
- 资助金额:
$ 94.27万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316202 - 财政年份:2023
- 资助金额:
$ 94.27万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
- 批准号:
2316235 - 财政年份:2023
- 资助金额:
$ 94.27万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316159 - 财政年份:2023
- 资助金额:
$ 94.27万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316160 - 财政年份:2023
- 资助金额:
$ 94.27万 - 项目类别:
Continuing Grant