Collaborative Research: PPoSS: Planning: Towards an Integrated, Full-stack System for Memory-centric Computing

协作研究:PPoSS:规划:面向以内存为中心的计算的集成全栈系统

基本信息

  • 批准号:
    2028825
  • 负责人:
  • 金额:
    $ 6.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

As the volume of data being processed by today’s systems continues to increase, the traditional organization of memory systems is shifting to accommodate that accelerating growth. Data-centric applications such as irregular graph-mining algorithms, distributed machine learning, and genome sequencing require a large amount of data to compute and store, and generate massive amounts of intermediate data to move around the compute resources. Memory-centric computing is a potential solution to overcome the performance bottleneck of current systems. Near or in-memory computing can mitigate the bandwidth limitations with fewer data movements between the memory and host processing units; a remote memory pool with a fast interconnect shared by all processing units can overcome the current capacity constraints. Both solutions are promising for breaking down the memory wall. However, it is challenging to release the power of both solutions with direct integration. In this project, the investigators propose an integrated, full-stack system to enable memory-centric computing (SMC2). The system will incorporate the emerging near-memory data processors (NDP) and an extensible remote memory pool to minimize the performance impact of memory accesses in graph-mining applications. The research tasks include optimizations in architecture, the software/hardware interface, programming models/compilers, and performance models/optimization. First, the architecture is revisited to utilize the NDP hardware to build an active memory system that supports intelligent data prefetch and speculative data push. Next, the system software is redesigned to support NDP function calls, data-push operations, and virtualization. Then, with new system abstractions, a new programming model is proposed to allow programmers to specify which tasks can run on the NDP resources, and to support efficient NDP-to-NDP communication. Lastly, a new system performance model and optimization framework are incorporated. By putting the four pieces together, the proposed system support can maximize the performance of memory-centric computing with new system abstractions and theories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着当今系统处理的数据量持续增加,存储器系统的传统组织正在转变以适应这种加速增长。以数据为中心的应用程序,如不规则图挖掘算法、分布式机器学习和基因组测序,需要计算和存储大量数据,并生成大量中间数据以在计算资源中移动。以内存为中心的计算是克服当前系统性能瓶颈的一个潜在解决方案。近内存或内存计算可以减少内存和主机处理单元之间的数据移动,从而缓解带宽限制;具有由所有处理单元共享的快速互连的远程内存池可以克服当前的容量限制。这两种解决方案都有希望打破内存墙。然而,通过直接集成来释放这两种解决方案的功能是具有挑战性的。在这个项目中,研究人员提出了一个集成的全栈系统,以实现以内存为中心的计算(SMC 2)。该系统将结合新兴的近内存数据处理器(NDP)和可扩展的远程内存池,以最大限度地减少图形挖掘应用程序中内存访问对性能的影响。研究任务包括体系结构优化、软件/硬件接口优化、编程模型/编译器优化和性能模型/优化。首先,该架构被重新审视以利用NDP硬件来构建支持智能数据预取和推测性数据推送的主动存储器系统。接下来,重新设计系统软件以支持NDP函数调用、数据推送操作和虚拟化。然后,新的系统抽象,提出了一个新的编程模型,允许程序员指定哪些任务可以运行在NDP资源,并支持有效的NDP到NDP通信。最后,一个新的系统性能模型和优化框架。通过将这四个部分结合在一起,拟议的系统支持可以最大限度地提高以内存为中心的计算的性能,并采用新的系统抽象和理论。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
STMatch: Accelerating Graph Pattern Matching on GPU with Stack-Based Loop Optimizations
Rethinking graph data placement for graph neural network training on multiple GPUs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng Jiang其他文献

Aluminum-doped n-type ZnS nanowires as high-performance UV and humidity sensors
铝掺杂 n 型 ZnS 纳米线作为高性能紫外线和湿度传感器
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhi Wang;Peng Jiang;Zhifeng Zhu;Chao Xie;Chunyan Wu;Linbao Luo;Yongqiang Yu;Li Wang;Xiwei Zhang;Jiansheng Jie
  • 通讯作者:
    Jiansheng Jie
Development of dynamic system response curve method for estimating initial conditions of conceptual hydrological models
开发用于估计概念水文模型初始条件的动态系统响应曲线方法
  • DOI:
    10.2166/hydro.2018.022
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Yiqun Sun;Weimin Bao;Peng Jiang;Xuying Wang;Chengmin He;Qian Zhang;Jian Wang
  • 通讯作者:
    Jian Wang
Synthesis and properties of blue zirconia ceramic based on Ni/Co doped Ba0.956Mg0.912Al10.088O17 blue pigments
Ni/Co掺杂Ba0.956Mg0.912Al10.088O17蓝色颜料蓝色氧化锆陶瓷的合成及性能
  • DOI:
    10.1016/j.jeurceramsoc.2022.04.015
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Qiuyu Cheng;Xin Chen;Peng Jiang;Qiuying Wang;Zhiwei Wang;M.A. Subramanian
  • 通讯作者:
    M.A. Subramanian
Short-term outcomes of CyberKnife therapy for advanced high-risk tumors: A report of 160 cases.
射波刀治疗晚期高危肿瘤的短期结果:160例报告。
A reaction density functional theory study of the solvent effect in prototype SN2 reactions in aqueous solution
水溶液中原型 SN2 反应溶剂效应的反应密度泛函理论研究
  • DOI:
    10.1039/c9cp03888d
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Cheng Cai;Weiqiang Tang;Chongzhi Qiao;Peng Jiang;Changjie Lu;Shuangliang Zhao;Honglai Liu
  • 通讯作者:
    Honglai Liu

Peng Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peng Jiang', 18)}}的其他基金

CAREER: Compiler and Runtime Support for Sampled Sparse Computations on Heterogeneous Systems
职业:异构系统上采样稀疏计算的编译器和运行时支持
  • 批准号:
    2338144
  • 财政年份:
    2024
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Continuing Grant
CSR: Small: A Fine-Grained Hierarchical Memory Management System for Applications with Dynamic Memory Demand on GPUs
CSR:小型:针对 GPU 上具有动态内存需求的应用程序的细粒度分层内存管理系统
  • 批准号:
    2311610
  • 财政年份:
    2023
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
  • 批准号:
    2310423
  • 财政年份:
    2023
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Continuing Grant
Scalable Nanomanufacturing of Reconfigurable Photonic Crystals
可重构光子晶体的可扩展纳米制造
  • 批准号:
    1562861
  • 财政年份:
    2016
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Standard Grant
Heat-Pipe-Inspired Dynamic Windows Enabled by a Scalable Bottom-Up Technology
由可扩展的自下而上技术实现的受热管启发的动态窗户
  • 批准号:
    1300613
  • 财政年份:
    2013
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Standard Grant
I-Corps: Development of a Scalable Bottom-Up Nanofabrication Platform
I-Corps:开发可扩展的自下而上纳米加工平台
  • 批准号:
    1265139
  • 财政年份:
    2012
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Standard Grant
Scalable Self-Assembly of Colloidal Nanoparticles
胶体纳米粒子的可扩展自组装
  • 批准号:
    1000686
  • 财政年份:
    2010
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Continuing Grant
CAREER: Development of A Scalable Spin-Coating Technological Platform for Colloidal Self-Assembly and Templating Nanofabrication
职业:开发用于胶体自组装和模板纳米加工的可扩展旋涂技术平台
  • 批准号:
    0744879
  • 财政年份:
    2008
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Standard Grant
Shear-Aligned Assembly of Photonic Band Gap Coatings
光子带隙涂层的剪切对齐组装
  • 批准号:
    0651780
  • 财政年份:
    2007
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316177
  • 财政年份:
    2023
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316235
  • 财政年份:
    2023
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2406572
  • 财政年份:
    2023
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316159
  • 财政年份:
    2023
  • 资助金额:
    $ 6.45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了