Collaborative Research: PPoSS: Planning: Scaling Secure Serverless Computing on Heterogeneous Datacenters

协作研究:PPoSS:规划:在异构数据中心上扩展安全无服务器计算

基本信息

  • 批准号:
    2028850
  • 负责人:
  • 金额:
    $ 7.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Cloud computing has been a dominant computing paradigm that enables many important computing capabilities including large-scale (big) data processing, artificial intelligence, and scientific discoveries. A recent evolution of cloud computing includes the move to serverless computing, which simplifies the deployment of computation while enabling better scaling and higher resource utilization. Meanwhile, datacenters, the backbone of cloud computing, increasingly include heterogeneous compute and memory resources. The move toward serverless computing and heterogeneous architecture of datacenters produces a gap that unless addressed, results in inefficient use of resources. The project seeks to address this gap in order to enable new applications and new functionalities to be provided in the cloud, at lower cost and higher security, providing platforms for the advancement of science, engineering, and commerce. Future datacenters will consist of heterogeneous compute and memory. Applications in the cloud are increasingly varied in their requirements, such as degree and granularity of parallelism; memory latency, capacity, and bandwidth requirements; and security and privacy requirements. This project investigates serverless computing as a promising programming model for heterogeneous platforms. Serverless platforms decouple system management from application execution: applications provide functions that manipulate data, and leave it to the platform to determine when the function should run, with what input data, and on what physical machine. Current platforms, such as AWS Lambda, Google Compute Functions or Azure Functions do not fully implement this vision, as they do not expose heterogeneous resources nor manage all resources automatically. This project explores novel abstractions for compute that extend serverless functions to better leverage unique hardware characteristics, and for memory to allow more automated leveraging of workload characteristics such as locality and compute intensity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
云计算已经成为一种占主导地位的计算范例,其实现了许多重要的计算能力,包括大规模(大)数据处理、人工智能和科学发现。云计算的最新发展包括转向无服务器计算,这简化了计算的部署,同时实现了更好的扩展和更高的资源利用率。与此同时,云计算的骨干网络中心越来越多地包括异构计算和内存资源。向无服务器计算和异构架构的转变产生了一个差距,除非得到解决,否则会导致资源的低效使用。该项目旨在解决这一差距,以便能够以更低的成本和更高的安全性在云中提供新的应用程序和新的功能,为科学,工程和商业的发展提供平台。未来的计算中心将由异构计算和内存组成。云中的应用程序的需求越来越多样化,例如并行度和粒度;内存延迟,容量和带宽要求;以及安全和隐私要求。该项目研究无服务器计算作为异构平台的一种有前途的编程模型。无服务器平台将系统管理与应用程序执行分离:应用程序提供操作数据的函数,并将其留给平台来确定函数何时运行,使用什么输入数据以及在什么物理机器上运行。 目前的平台,如AWS Lambda、Google Compute Functions或Azure Functions,并没有完全实现这一愿景,因为它们没有公开异构资源,也没有自动管理所有资源。该项目探索了新的计算抽象,扩展了无服务器功能,以更好地利用独特的硬件特性,并为内存提供了更自动化的工作负载特性,如局部性和计算强度。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响评审标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding and bridging the gaps in current GNN performance optimizations
Recurrent Neural Networks Meet Context-Free Grammar: Two Birds with One Stone
递归神经网络遇到上下文无关语法:一石二鸟
  • DOI:
    10.1109/icdm51629.2021.00125
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guan, Hui;Chaudhary, Umang;Xu, Yuanchao;Ning, Lin;Zhang, Lijun;Shen, Xipeng
  • 通讯作者:
    Shen, Xipeng
G-TADOC: Enabling Efficient GPU-Based Text Analytics without Decompression
  • DOI:
    10.1109/icde51399.2021.00148
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feng Zhang;Zaifeng Pan;Yanliang Zhou;Jidong Zhai;Xipeng Shen;O. Mutlu;Xiaoyong Du
  • 通讯作者:
    Feng Zhang;Zaifeng Pan;Yanliang Zhou;Jidong Zhai;Xipeng Shen;O. Mutlu;Xiaoyong Du
Bit-GraphBLAS: Bit-Level Optimizations of Matrix-Centric Graph Processing on GPU
Deep NLP-Based Co-Evolvement for Synthesizing Code Analysis from Natural Language
基于深度 NLP 的协同进化,用于从自然语言综合代码分析
  • DOI:
    10.1145/3446804.3446852
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nan, Zifan;Guan, Hui;Shen, Xipeng;Liao, Chunhua
  • 通讯作者:
    Liao, Chunhua
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xu Liu其他文献

A Loss Separation Method of a High-Speed Magnetic Levitated PMSM Based on Drag System Experiment Without Torque Meter
基于无扭矩计拖动系统实验的高速磁悬浮永磁同步电机损耗分离方法
Simultaneous Two-Angle Axial Ratiometry for Fast Live and Long-Term Three-Dimensional Super-Resolution Fluorescence Imaging
用于快速实时和长期三维超分辨率荧光成像的同时两角轴比率测量
  • DOI:
    10.1021/acs.jpclett.9b03093
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenjie Liu;Cuifang Kuang;Yifan Yuan;Zhimin Zhang;Youhua Chen;Yubing Han;Liang Xu;Meng Zhang;Yu-Hui Zhang;Yingke Xu;Xu Liu
  • 通讯作者:
    Xu Liu
PPARγagonists use and recurrence of atrial fibrillation after successful electricalcardioversion.
PPARγ激动剂的使用和成功电复律后心房颤动的复发。
Development and validation of the geriatric trauma frailty index for geriatric trauma patients based on electronic hospital records
基于电子病历的老年创伤患者衰弱指数的制定和验证
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Fangjie Zhao;Bihan Tang;Xu Liu;Weizong Weng;Bo Wang;Yincheng Wang;Zhifeng Zhang;Lulu Zhang
  • 通讯作者:
    Lulu Zhang
Morphological transformation enhances Tumor Retention by Regulating the Self-assembly of Doxorubicin-peptide Conjugates
形态转化通过调节阿霉素-肽缀合物的自组装增强肿瘤保留
  • DOI:
    10.7150/thno.45088
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    12.4
  • 作者:
    Xu Liu;Wang Yutong;Zhu Chenqi;Ren Shujing;Shao Yurou;Wu Li;Li Weidong;Jia Xiaobin;Hu Rongfeng;Chen Rui;Chen Zhipeng
  • 通讯作者:
    Chen Zhipeng

Xu Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xu Liu', 18)}}的其他基金

Collaborative Research:CNS Core:Small:Towards Efficient Cloud Services
合作研究:CNS核心:小型:迈向高效的云服务
  • 批准号:
    2007922
  • 财政年份:
    2020
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
CSR:Small:Supporting Position Independence and Reusability of Data on Byte-Addressable Non-Volatile Memory
CSR:Small:支持字节可寻址非易失性存储器上数据的位置独立性和可重用性
  • 批准号:
    1717425
  • 财政年份:
    2017
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Efficient Exploitation of Heterogeneous Memory through OS/Compiler Support
CSR:小型:协作研究:通过操作系统/编译器支持有效利用异构内存
  • 批准号:
    1618620
  • 财政年份:
    2016
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
CRII: SHF: Optimizing Program Executions on Non-uniform Threaded Architectures
CRII:SHF:优化非均匀线程架构上的程序执行
  • 批准号:
    1464157
  • 财政年份:
    2015
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316177
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316235
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2406572
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316159
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了