EAGER: SARE: Real-Time Learning and Countering of Side-Channel Emissions to Enable Secure RF and Analog Microelectronics
EAGER:SARE:实时学习和对抗侧信道发射,以实现安全的射频和模拟微电子学
基本信息
- 批准号:2028893
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rapid growth of sensors and Internet of Things (IoT) has the potential to transform the society, economy, and improve the quality of life. Many IoT devices at the extreme cloud edge collect and transmit sensitive information wirelessly for remote computing. However, the sensitive information can be leaked through side channels, including power consumption and electromagnetic (EM) emissions. The vulnerability of those wireless devices to hacking or exploitation has emerged as a major public concern over IoT security and safety. Nevertheless, existing state-of-the-art cybersecurity approaches are mainly focused on software and digital modules. Security measures have not been integrated in the radio frequency (RF) and analog domains to verify signal and power sources or to suppress the side-channel emissions. To bridge the gap, this project will develop a holistic self-testing approach incorporating nanoscale electromagnetic sensing devices, reconfigurable RF circuits, and machine-learning algorithms to detect threats and counter malicious attacks directly at the RF and analog front-end. Combing emerging material, device, circuit, and system concepts, this project aims to develop a built-in threat-detection-and-reaction approach in the RF/analog domain without degrading the performance while achieving good energy efficiency. The results from this work have the potential to make a significant impact on the secure electronics and telecommunication industry. The minimal usage of energy and space can allow the energy-constrained wireless devices to have an on-chip detection-and-reaction system to rapidly predict and counter malicious attacks in the front line. In addition, the project will provide a unique opportunity for students of different levels (K-12, undergraduate, and graduate) and the general public to learn the security vulnerability of wireless devices and its countermeasures.The goal of this project is to enhance security in wireless devices at the RF/analog front-end through interdisciplinary research. Low-power and low-voltage on-chip sensors will be developed to collect data for analysis of power and EM signal behaviors. To sense small changes of magnetic fields and inform the machine-learning circuits, a nanoscale heterostructure will be developed to monolithically integrate CMOS circuits with novel spin-torque devices that can be utilized as robust high-fidelity EM sensors and embedded into interconnects. A sensing circuit will be developed to achieve high-accuracy EM measurement while eliminating any response to the external stray field disturbance. Low-power charge-sharing analog-to-digital converters will be investigated to perform machine-learning algorithms. In order to rapidly predict and detect the potential attacks, machine-learning circuits will be trained to learn the normal behavior of the system with different operation schemes so that this built-in detection system can enable accurate predictions of a variety of adversaries in real time. Learning algorithms and reconfigurable architectures will be developed to form a closed-loop fast threat-detection-and-reaction system. Boosting approaches for ensembles of linear classifiers will be exploited to enhance the detection accuracy with minimal hardware costs. Programmable nanoscale oscillators with emerging materials for frequency hopping and various switching schemes will be exploited to increase resistance and resilience to tampering side-channel attacks. When a threat is detected, the suppression mechanism will be activated to mitigate the damage immediately.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传感器和物联网(IoT)的快速增长具有改变社会、经济和提高生活质量的潜力。位于极端云边缘的许多物联网设备以无线方式收集和传输敏感信息,以进行远程计算。然而,敏感信息可能会通过旁路泄露,包括功耗和电磁(EM)排放。这些无线设备容易受到黑客攻击或利用的漏洞,已成为公众对物联网安全和安全的主要担忧。然而,现有的最先进的网络安全方法主要集中在软件和数字模块上。安全措施尚未集成在射频(RF)和模拟域中,以验证信号和电源或抑制旁通道发射。为了弥补这一差距,该项目将开发一种全面的自我测试方法,其中包括纳米级电磁传感设备、可重新配置的射频电路和机器学习算法,以直接在射频和模拟前端检测威胁和对抗恶意攻击。结合新兴的材料、器件、电路和系统概念,该项目旨在开发射频/模拟领域的内置威胁检测和反应方法,在不降低性能的同时实现良好的能效。这项工作的结果有可能对安全电子和电信行业产生重大影响。能源和空间的最小使用可以使能源受限的无线设备具有片上检测和反应系统,以在第一线快速预测和应对恶意攻击。此外,该项目将为不同级别的学生(K-12、本科生和研究生)和普通公众提供一个独特的机会,了解无线设备的安全漏洞及其对策。该项目的目标是通过跨学科研究提高射频/模拟前端无线设备的安全性。将开发低功率和低电压的片上传感器来收集数据,用于分析功率和电磁信号行为。为了感知磁场的微小变化并向机器学习电路提供信息,将开发一种纳米级异质结构,将其与新型自旋扭矩器件单片集成在一起,这些器件可以用作坚固的高保真电磁传感器并嵌入到互连中。将开发一种传感电路,以实现高精度的电磁测量,同时消除对外部杂散场干扰的任何响应。将研究低功耗电荷共享模数转换器以执行机器学习算法。为了快速预测和检测潜在的攻击,机器学习电路将被训练来学习系统在不同操作方案下的正常行为,从而使这个内置的检测系统能够实时准确地预测各种对手。将开发学习算法和可重构的体系结构,以形成一个闭环的快速威胁检测和反应系统。将利用线性分类器集成的增强方法来以最小的硬件成本来提高检测精度。可编程纳米级振荡器将采用新兴的跳频材料和各种切换方案,以提高对篡改旁通道攻击的抵抗力和弹性。当检测到威胁时,抑制机制将被激活以立即减轻损害。这一裁决反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Class-E Power Amplifiers Incorporating Fingerprint Augmentation With Combinatorial Security Primitives for Machine-Learning-Based Authentication in 65 nm CMOS
E 类功率放大器将指纹增强与组合安全原语相结合,用于 65 nm CMOS 中基于机器学习的身份验证
- DOI:10.1109/tcsi.2022.3141336
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shen, Yuyi;Xu, Jiachen;Yi, Jinho;Chen, Ethan;Chen, Vanessa
- 通讯作者:Chen, Vanessa
Bayesian Neural Networks for Identification and Classification of Radio Frequency Transmitters Using Power Amplifiers’ Nonlinearity Signatures
使用功率放大器的贝叶斯神经网络对射频发射器进行识别和分类 – 非线性特征
- DOI:10.1109/ojcas.2021.3089499
- 发表时间:2021
- 期刊:
- 影响因子:2.6
- 作者:Xu, Jiachen;Shen, Yuyi;Chen, Ethan;Chen, Vanessa
- 通讯作者:Chen, Vanessa
RF Analog Hardware Trojan Detection Through Electromagnetic Side-Channel
通过电磁侧通道进行射频模拟硬件木马检测
- DOI:10.1109/ojcas.2022.3210163
- 发表时间:2022
- 期刊:
- 影响因子:2.6
- 作者:Kan, John;Shen, Yuyi;Xu, Jiachen;Chen, Ethan;Zhu, Jimmy;Chen, Vanessa
- 通讯作者:Chen, Vanessa
RF Fingerprint Classification With Combinatorial-Randomness-Based Power Amplifiers and Convolutional Neural Networks: Secure analog/RF electronics and electromagnetics
- DOI:10.1109/mssc.2022.3200302
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:V. Chen;Jiachen Xu;Yuyi Shen;Ethan Chen
- 通讯作者:V. Chen;Jiachen Xu;Yuyi Shen;Ethan Chen
Deep Reinforcement Learning on FPGA for Self-Healing Cryogenic Power Amplifier Control
用于自愈低温功率放大器控制的 FPGA 深度强化学习
- DOI:10.1109/ojcas.2023.3282929
- 发表时间:2023
- 期刊:
- 影响因子:2.6
- 作者:Xu, Jiachen;Shen, Yuyi;Yi, Jinho;Chen, Ethan;Chen, Vanessa
- 通讯作者:Chen, Vanessa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vanessa Chen其他文献
Cancer cells are sensitive to wild-type IDH1 inhibition under nutrient limitation
营养限制下癌细胞对野生型 IDH1 抑制敏感
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ali Vaziri;J. Hue;Hallie Graor;Erin Prendergast;Vanessa Chen;J. Cassel;F. S. Mohammed;Ata Abbas;K. Dukleska;I. Khokhar;Omid Hajhassani;Mahsa Zarei;Rui Wang;L. Rothermel;I. Bederman;Jessica Browers;R. Getts;H. Brunengraber;J. Salvino;J. Brody;J. Winter - 通讯作者:
J. Winter
Matching patients with therapists in culturally diverse rehabilitation services during civil unrest
在内乱期间为患者与治疗师匹配不同文化的康复服务
- DOI:
10.1007/s10754-023-09359-8 - 发表时间:
2023 - 期刊:
- 影响因子:2.4
- 作者:
S. Kamenetsky;Vanessa Chen;E. Heled - 通讯作者:
E. Heled
Vanessa Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vanessa Chen', 18)}}的其他基金
CAREER: Bio-Inspired Sensory Interfaces Incorporating Embedded Classification and Encryption
职业:结合嵌入式分类和加密的仿生传感接口
- 批准号:
1846205 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
SpecEES: Trusted Frequency-Agile Transceiver Architectures for Secure and Energy-Efficient Communication
SpecEES:用于安全和节能通信的可信频率捷变收发器架构
- 批准号:
1923359 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Bio-Inspired Sensory Interfaces Incorporating Embedded Classification and Encryption
职业:结合嵌入式分类和加密的仿生传感接口
- 批准号:
1953801 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
SpecEES: Trusted Frequency-Agile Transceiver Architectures for Secure and Energy-Efficient Communication
SpecEES:用于安全和节能通信的可信频率捷变收发器架构
- 批准号:
1952907 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceiversfor IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
- 批准号:
2029407 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: Collaborative Research: Exploring and Mitigating Attacks of Millimeter-wave Radar Sensors in Autonomous Vehicles
EAGER:SARE:协作研究:探索和减轻自动驾驶汽车中毫米波雷达传感器的攻击
- 批准号:
2028872 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: Multiferroic Shields for Smart Analog Security
EAGER:SARE:用于智能模拟安全的多铁屏蔽
- 批准号:
2029007 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: Secure LiDAR Systems with Frequency Encryption
EAGER:SARE:具有频率加密功能的安全 LiDAR 系统
- 批准号:
2028406 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER SARE: Physical-Layer Security of THz Communication Using Orbital Angular Momentum and Rapid Frequency Hopping
EAGER SARE:使用轨道角动量和快速跳频的太赫兹通信物理层安全
- 批准号:
2028824 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: Dynamic Phase Center Antennas for Secure Sensing and Communications
EAGER:SARE:用于安全传感和通信的动态相位中心天线
- 批准号:
2028736 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: Collaborative Research: Exploring and Mitigating Attacks of Millimeter-wave Radar Sensors in Autonomous Vehicles
EAGER:SARE:协作研究:探索和减轻自动驾驶汽车中毫米波雷达传感器的攻击
- 批准号:
2028863 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: Security and Functionality of Energy Storage Devices from an External Electromagnetic Attack
EAGER:SARE:储能设备免受外部电磁攻击的安全性和功能
- 批准号:
2028992 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceivers for IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
- 批准号:
2029461 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: In-Sensor Hardware-Software Co-design Methodology of the Hall Effect Sensors to Prevent and Contain the EMI Spoofing Attacks in the Analog-RF Systems
EAGER:SARE:霍尔效应传感器的传感器内硬件-软件协同设计方法,用于防止和遏制模拟射频系统中的 EMI 欺骗攻击
- 批准号:
2028269 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




