Collaborative Research: PPoSS: Planning: A Cross-Layer Observable Approach to Extreme Scale Machine Learning and Analytics
协作研究:PPoSS:规划:超大规模机器学习和分析的跨层可观察方法
基本信息
- 批准号:2028942
- 负责人:
- 金额:$ 4.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to analyze and learn from large volumes of data is becoming important in many walks of human endeavor, including medicine, science, and engineering. Analysis workflows for high-resolution images (e.g. medical imaging, sky surveys), scientific simulations, as well as those for graph analytics and machine learning are typically time consuming because of the extreme scales of data involved. While the hardware elements of the modern data center are undergoing a rapid transformation to embrace the storage, processing, and analysis of needs of such applications - understanding of how the different layers of the systems stack interact with one another and contribute to end-to-end application performance is challenging. This planning project envisions the ACROPOLIS framework to address these challenges. ACROPOLIS will enable a comprehensive research agenda on systems software that will facilitate rapid and flexible construction of analytics workflows and their scalable execution. By facilitating the rapid prototyping of application drivers ACROPOLIS can also enable important scientific discoveries to potentially improve human health and better understand the world around us. The research enabled by ACROPOLIS will also educate many students, including those from under-represented groups, who will become part of a highly-trained workforce capable of addressing our nation's needs long into the future. With respect to broader impacts, ACROPOLIS will provide a unique research and training infrastructure that will catalyze research in multiple disciplines as well as facilitate convergent research across disciplines. Well-established initiatives at The Ohio State University, such as the Louis Stokes Alliances for Minority Participation (LSAMP) as well as new programs in Data Analytics, will facilitate the recruitment of graduate and undergraduate students for involvement in this research agenda. This project is aligned with two of NSF’s 10 Big Ideas: Harnessing the Data Revolution and Growing Convergence Research, as well as the American AI Initiative.The project addresses five key research pillars: 1) Flexible abstractions for parallel computation and data representation, 2) Modeling data movement complexity at extreme scales, 3) Pattern-driven scalable communication and I/O systems, 4) Near-memory architectures for machine learning and analytics, and 5) Cross-layer observability and introspection. Specifically, the focus is on the design of an end-to-end framework inculcating a high-performance, next-generation, heterogeneous, reconfigurable hardware and software stack to facilitate real-time interaction, analytics, and machine learning for a range of scientific disciplines including Computational Pathology and Computational Fluid Dynamics and Emergency Response.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多人类努力中,包括医学,科学和工程学在内的许多步行中,分析和学习的能力变得越来越重要。分析高分辨率图像(例如医学成像,天空调查),科学模拟以及图形分析和机器学习的分析工作流程通常很耗时,因为涉及的数据范围极高。尽管现代数据中心的硬件元素正在经历快速转换,以包含对此类应用程序需求的存储,处理和分析 - 了解系统的不同层如何相互交互,并为端到端的应用程序性能做出挑战。雅典卫城将启用有关系统软件的全面研究议程,该议程将促进分析工作流程及其可扩展执行的快速,灵活构建。通过支持应用程序驱动力的快速原型制作,雅典卫城也可以使重要的科学发现有潜在地改善人类健康,并更好地了解我们周围的世界。由雅典卫城实施的研究还将教育许多学生,包括来自代表性不足的群体的学生,他们将成为一支受过训练的劳动力的一部分,能够在未来长期以来满足我们国家的需求。关于更广泛的影响,雅典卫城将提供独特的研究和培训基础设施,将促进多个学科的研究以及跨学科的方便收敛研究。俄亥俄州立大学的倡议良好,例如路易斯·斯托克斯(Louis Stokes)少数群体参与(LSAMP)以及数据分析的新计划,将有助于招募研究生和本科生,以参与这项研究议程。 This project is aligned with two of NSF’s 10 Big Ideas: Harnessing the Data Revolution and Growing Convergence Research, as well as the American AI Initiative.The project addresses five key research pillars: 1) Flexible abstractions for parallel computation and data representation, 2) Modeling data movement complexity at extreme scales, 3) Pattern-driven scalable communication and I/O systems, 4) Near-memory architectures for machine learning and analytics, and 5)跨层观察和内省。具体而言,重点是设计端到端框架的设计,该框架灌输了高性能,下一代,异构,可重构的硬件和软件堆栈,以促进实时互动,分析和机器学习,包括一系列科学学科,包括计算病理学和计算流动性动态动力学和紧急响应。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子优点和更广泛的审查标准评估来诚实地获得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Tiled Sparse Matrix Multiplication through Matrix Signatures
- DOI:10.1109/sc41405.2020.00091
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Süreyya Emre Kurt;Aravind Sukumaran-Rajam;F. Rastello;P. Sadayappan
- 通讯作者:Süreyya Emre Kurt;Aravind Sukumaran-Rajam;F. Rastello;P. Sadayappan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ponnuswamy Sadayappan其他文献
Ponnuswamy Sadayappan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ponnuswamy Sadayappan', 18)}}的其他基金
Collaborative Research: PPoSS: Large: A Comprehensive Framework for Efficient, Scalable, and Performance-Portable Tensor Applications
合作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用的综合框架
- 批准号:
2217154 - 财政年份:2022
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Model-Driven Compiler Optimization and Algorithm-Architecture Co-Design for Scalable Machine Learning
协作研究:PPoSS:规划:用于可扩展机器学习的模型驱动编译器优化和算法架构协同设计
- 批准号:
2119677 - 财政年份:2021
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
OAC: Small: Data Locality Optimization for Sparse Matrix/Tensor Computations
OAC:小型:稀疏矩阵/张量计算的数据局部性优化
- 批准号:
2009007 - 财政年份:2020
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
CDS&E: Compiler/Runtime Support for Developing Scalable Parallel Multi-Scale Multi-Physics
CDS
- 批准号:
1940789 - 财政年份:2019
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
SHF: Small: Tools for Productive High-performance Computing with GPUs
SHF:小型:使用 GPU 进行高效高性能计算的工具
- 批准号:
2018016 - 财政年份:2019
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Parallel Algorithm by Blocks - A Data-centric Compiler/runtime System for Productive Programming of Scalable Parallel Systems
SPX:协作研究:块并行算法 - 用于可扩展并行系统的高效编程的以数据为中心的编译器/运行时系统
- 批准号:
1946752 - 财政年份:2019
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Parallel Algorithm by Blocks - A Data-centric Compiler/runtime System for Productive Programming of Scalable Parallel Systems
SPX:协作研究:块并行算法 - 用于可扩展并行系统的高效编程的以数据为中心的编译器/运行时系统
- 批准号:
1919211 - 财政年份:2019
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
SHF: Small: Tools for Productive High-performance Computing with GPUs
SHF:小型:使用 GPU 进行高效高性能计算的工具
- 批准号:
1816793 - 财政年份:2018
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
XPS: FULL: Collaborative Research: PARAGRAPH: Parallel, Scalable Graph Analytics
XPS:完整:协作研究:段落:并行、可扩展图形分析
- 批准号:
1629548 - 财政年份:2016
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
EAGER: Towards Automated Characterization of the Data-Movement Complexity of Large Scale Analytics Applications
EAGER:实现大规模分析应用程序数据移动复杂性的自动表征
- 批准号:
1645599 - 财政年份:2016
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
相似国自然基金
钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
- 批准号:52371195
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CLMP介导Connexin45-β-catenin复合体对先天性短肠综合征的致病机制研究
- 批准号:82370525
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
- 批准号:62371132
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
- 批准号:42301138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
- 批准号:52302289
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316161 - 财政年份:2023
- 资助金额:
$ 4.54万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316176 - 财政年份:2023
- 资助金额:
$ 4.54万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316158 - 财政年份:2023
- 资助金额:
$ 4.54万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316203 - 财政年份:2023
- 资助金额:
$ 4.54万 - 项目类别:
Continuing Grant