OAC: Small: Data Locality Optimization for Sparse Matrix/Tensor Computations
OAC:小型:稀疏矩阵/张量计算的数据局部性优化
基本信息
- 批准号:2009007
- 负责人:
- 金额:$ 49.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The cost of data movement vastly exceeds the cost of execution of arithmetic operations on current computers and the imbalance is only expected to get worse. Hence the minimization of data movement in the implementation of algorithms is critical. Tiling is a well known technique for data-locality optimization and is widely used in compilers as well as high-performance numerical libraries for dense matrix/tensor computations. However, data-locality optimization for sparse computations is a significant challenge, in large part because the data access patterns are not known a priori. This project proposes a plan of research to systematically explore a number of issues pertaining to data-locality optimization for sparse matrix/tensor computations. The project identifies an important subclass of sparse computations used in machine learning and data analytics, and proposes tools and techniques to enable high-performance parallel implementations on multicore CPUs and GPUs. The broader impact of the project will be the enhancement of programmer productivity and the enabling of software portability and high performance for applications in data analytics and machine learning.The challenge of data-locality optimization for the data-dependent and irregular access patterns that occur with sparse matrix/tensor computations will be addressed through research along multiple directions: 1) Compact signatures for sparse matrices: the strong relationship between the data access patterns for key sparse matrix primitives of use in machine learning and data analytics drives the development of one-dimensional signature vectors that capture the essential characteristics of the two-dimensional sparsity pattern as it pertains to needed data movement in a memory hierarchy; 2) Sparse tiling: Sparse matrix signature vectors will serve as a basis for dynamic decisions based on target platform characteristics, for tile size selection and scheduling of tiles for load-balanced execution; 3) Matrix renumbering/reordering: The impact of row/column reordering on the performance of sparse matrix primitives will be investigated, and new reordering schemes will be devised to enhance data-locality for key sparse matrix/tensor primitives; 4) Sparse microkernels: Microkernels will be developed and optimized for CPUs/GPUs, and used as the lowest-level building blocks that execute the innermost tiles in the tiled execution of sparse matrix/tensor computations; 5) Architecture-aware performance prediction: Models will be developed that combine analysis of predicted data-movement volume in combination with machine learning using algorithmic and architectural features.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据移动的成本大大超过了当前计算机上算术操作执行的成本,并且预计不平衡会变得更糟。因此,在实施算法中,数据流动的最小化至关重要。平铺是一种众所周知的数据局部优化技术,可广泛用于编译器以及密集矩阵/张量计算的高性能数值库。但是,稀疏计算的数据局部性优化是一个重大挑战,在很大程度上是因为数据访问模式尚不清楚。该项目提出了一项研究计划,以系统地探索与稀疏矩阵/张量计算的数据局部优化有关的许多问题。该项目确定了在机器学习和数据分析中使用的稀疏计算的重要子类,并提出了工具和技术,以实现对多核CPU和GPU的高性能并行实现。 The broader impact of the project will be the enhancement of programmer productivity and the enabling of software portability and high performance for applications in data analytics and machine learning.The challenge of data-locality optimization for the data-dependent and irregular access patterns that occur with sparse matrix/tensor computations will be addressed through research along multiple directions: 1) Compact signatures for sparse matrices: the strong relationship between the data access patterns for key sparse机器学习和数据分析中使用的矩阵原始图驱动了一维签名向量的开发,这些向量捕获了二维稀疏模式的基本特征,因为它与内存层次结构中需要的数据移动有关; 2)稀疏瓷砖:稀疏矩阵签名向量将作为基于目标平台特征的动态决策的基础,用于瓷砖尺寸的选择和瓷砖调度,以进行负载平衡的执行; 3)矩阵重新定制/重新排序:将研究行/列重新排序对稀疏基质原语的性能的影响,并将设计新的重新排序方案,以增强对关键稀疏矩阵/张量原始原始原始原始的数据局部性; 4)稀疏微粒:将针对CPU/GPU开发和优化微粒,并用作最低级别的构建块,该块在稀疏矩阵/张量计算的瓷砖执行中执行最内部的瓷砖; 5)建筑感知的性能预测:将开发模型,将预测数据移动量的分析与使用算法和建筑特征结合机器学习结合。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来支持的。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sparsity-Aware Tensor Decomposition
稀疏感知张量分解
- DOI:10.1109/ipdps53621.2022.00097
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kurt, Sureyya Emre;Raje, Saurabh;Sukumaran-Rajam, Aravind;Sadayappan, P.
- 通讯作者:Sadayappan, P.
Efficient Tiled Sparse Matrix Multiplication through Matrix Signatures
- DOI:10.1109/sc41405.2020.00091
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Süreyya Emre Kurt;Aravind Sukumaran-Rajam;F. Rastello;P. Sadayappan
- 通讯作者:Süreyya Emre Kurt;Aravind Sukumaran-Rajam;F. Rastello;P. Sadayappan
Communication Optimization for Distributed Execution of Graph Neural Networks
- DOI:10.1109/ipdps54959.2023.00058
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Süreyya Emre Kurt;Jinghua Yan;Aravind Sukumaran-Rajam;Prashant Pandey;P. Sadayappan
- 通讯作者:Süreyya Emre Kurt;Jinghua Yan;Aravind Sukumaran-Rajam;Prashant Pandey;P. Sadayappan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ponnuswamy Sadayappan其他文献
Ponnuswamy Sadayappan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ponnuswamy Sadayappan', 18)}}的其他基金
Collaborative Research: PPoSS: Large: A Comprehensive Framework for Efficient, Scalable, and Performance-Portable Tensor Applications
合作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用的综合框架
- 批准号:
2217154 - 财政年份:2022
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Model-Driven Compiler Optimization and Algorithm-Architecture Co-Design for Scalable Machine Learning
协作研究:PPoSS:规划:用于可扩展机器学习的模型驱动编译器优化和算法架构协同设计
- 批准号:
2119677 - 财政年份:2021
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: A Cross-Layer Observable Approach to Extreme Scale Machine Learning and Analytics
协作研究:PPoSS:规划:超大规模机器学习和分析的跨层可观察方法
- 批准号:
2028942 - 财政年份:2020
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
CDS&E: Compiler/Runtime Support for Developing Scalable Parallel Multi-Scale Multi-Physics
CDS
- 批准号:
1940789 - 财政年份:2019
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
SHF: Small: Tools for Productive High-performance Computing with GPUs
SHF:小型:使用 GPU 进行高效高性能计算的工具
- 批准号:
2018016 - 财政年份:2019
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Parallel Algorithm by Blocks - A Data-centric Compiler/runtime System for Productive Programming of Scalable Parallel Systems
SPX:协作研究:块并行算法 - 用于可扩展并行系统的高效编程的以数据为中心的编译器/运行时系统
- 批准号:
1946752 - 财政年份:2019
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Parallel Algorithm by Blocks - A Data-centric Compiler/runtime System for Productive Programming of Scalable Parallel Systems
SPX:协作研究:块并行算法 - 用于可扩展并行系统的高效编程的以数据为中心的编译器/运行时系统
- 批准号:
1919211 - 财政年份:2019
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
SHF: Small: Tools for Productive High-performance Computing with GPUs
SHF:小型:使用 GPU 进行高效高性能计算的工具
- 批准号:
1816793 - 财政年份:2018
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
XPS: FULL: Collaborative Research: PARAGRAPH: Parallel, Scalable Graph Analytics
XPS:完整:协作研究:段落:并行、可扩展图形分析
- 批准号:
1629548 - 财政年份:2016
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
EAGER: Towards Automated Characterization of the Data-Movement Complexity of Large Scale Analytics Applications
EAGER:实现大规模分析应用程序数据移动复杂性的自动表征
- 批准号:
1645599 - 财政年份:2016
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
相似国自然基金
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于复杂抽样和时空效应下卫生服务调查数据的小域估计方法研究
- 批准号:82304238
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据的小微企业经营风险智能识别与应对策略研究
- 批准号:72301188
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不平衡数据下基于多源域迁移学习的小微企业信用风险评估研究
- 批准号:72301093
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
复杂场景下模型—数据联合驱动的红外小目标检测研究
- 批准号:62303165
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2412329 - 财政年份:2023
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2007789 - 财政年份:2020
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2007829 - 财政年份:2020
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
OAC Core: Small: Collaborative Research: Data Provenance Infrastructure towards Robust andReliable Data Sharing and Analytics
OAC 核心:小型:协作研究:数据来源基础设施实现稳健可靠的数据共享和分析
- 批准号:
1908021 - 财政年份:2019
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
OAC Core: Small: Devising Data-driven Methodologies by Employing Large-scale Empirical Data to Fingerprint, Attribute, Remediate and Analyze Internet-scale IoT Maliciousness
OAC 核心:小型:通过使用大规模经验数据来指纹识别、归因、修复和分析互联网规模的物联网恶意行为,设计数据驱动的方法
- 批准号:
1953051 - 财政年份:2019
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant