RAPID: Data-driven Multiscale Integrative Model of the Coronavirus Virion
RAPID:数据驱动的冠状病毒病毒体多尺度综合模型
基本信息
- 批准号:2029092
- 负责人:
- 金额:$ 19.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gregory Voth of the University of Chicago is supported by this RAPID award to develop and deploy multiscale models of the entire SARS-CoV-2 virus, the virus that causes the novel coronavirus infectious disease 2019 (COVID-19). Such multiscale models, at both the atomistic and coarse grain levels, contribute greatly to our understanding of how this virus replicates. Molecular simulations of viral processes in COVID-19 are useful to identify possible weaknesses in the viral life cycle. This research focuses on the dynamics of coronavirus processes, including the conformational transitions that are required for the virus to function. The project has three main foci: 1) all-atom simulations of individual viral proteins that are essential to the viral life cycle; 2) a coarse-grain models to a holistic understanding of entire virion (the virus outside the host cell) and its large scale processes, such as fusion of virions with host cells; and 3) machine-learning-based approaches to link the all-atom and coarse grain models and further refine their accuracy. As part of a larger, international community working on COVID-19, all data, models and analysis code will be made publicly available as soon as they are developed, including through the NSF-funded Molecular Science Software Institute (MolSSI). The complete multiscale picture of virus structure and dynamics will be used to identify potential target sites for drug development and other therapeutic strategies.The research in this RAPID project is for the development and application of multiscale computer simulation methods to characterize key elements of large-scale viral processes in SARS-CoV-2 replication. To achieve this goal there are three main objectives: (1) to characterize the dynamical behavior of essential viral proteins involved using all-atom molecular dynamics simulations and understand the conformational transitions necessary for their function; (2) to develop and model the complete SARS-CoV-2 virion using coarse-grained simulation methods; and (3) to develop machine learning based approaches that systematically link atomic-level and coarse-grained simulation scales, and facilitate the generation of even more accurate and descriptive coarse-grained models. This research focuses on several biomolecular systems that are urgently needed to understand and characterize the transmission and propagation of the SARS-CoV-2 virus, including the spike protein that mediates entry of the viral particles into host cells, the host cell receptor, angiotensin-converting-enzyme 2, which binds the spike protein, coronavirus protease which catalyzes viral processes, and other viral protein components, especially as structural data and biochemical information are released in the next few months. Coarse-grained simulations will focus on the urgent need to develop a holistic model of the entire SARS-CoV-2 virion as well as its large-scale processes such as the fusion of virions with host cells.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
芝加哥大学的Gregory Voth得到了这个RAPID奖的支持,以开发和部署整个SARS-CoV-2病毒的多尺度模型,该病毒导致2019年新型冠状病毒传染病(COVID-19)。 这样的多尺度模型,在原子和粗颗粒水平,大大有助于我们了解这种病毒如何复制。 COVID-19病毒过程的分子模拟有助于识别病毒生命周期中可能的弱点。 这项研究的重点是冠状病毒过程的动力学,包括病毒发挥功能所需的构象转变。该项目有三个主要焦点:1)病毒生命周期所必需的单个病毒蛋白质的全原子模拟; 2)整体理解整个病毒粒子的粗粒模型(宿主细胞外的病毒)及其大规模过程,如病毒体与宿主细胞的融合;以及3)基于机器学习的方法来连接全原子模型和粗粒度模型并进一步改进其精度。 作为一个更大的、致力于COVID-19的国际社区的一部分,所有数据、模型和分析代码一旦开发出来,将立即公开,包括通过NSF资助的分子科学软件研究所(MolSSI)。 病毒结构和动力学的完整多尺度图像将用于确定药物开发和其他治疗策略的潜在靶点。该RAPID项目的研究是开发和应用多尺度计算机模拟方法,以表征SARS-CoV-2复制中大规模病毒过程的关键要素。为了实现这一目标,有三个主要目标:(1)使用全原子分子动力学模拟来表征所涉及的病毒蛋白质的动力学行为,并理解其功能所必需的构象转变:(2)使用粗粒度模拟方法开发和模拟完整的SARS-CoV-2病毒粒子;以及(3)开发基于机器学习的方法,该方法系统地链接原子级和粗粒度仿真尺度,并且促进生成甚至更准确和描述性的粗粒度模型。这项研究的重点是几个生物分子系统,迫切需要了解和表征SARS-CoV-2病毒的传播和繁殖,包括介导病毒颗粒进入宿主细胞的刺突蛋白,宿主细胞受体,结合刺突蛋白的血管紧张素转换酶2,催化病毒过程的冠状病毒蛋白酶,以及其他病毒蛋白组分,特别是在接下来的几个月里,结构数据和生化信息将被公布。粗粒度模拟将侧重于开发整个SARS-CoV-2病毒体及其大规模过程(如病毒体与宿主细胞融合)的整体模型的迫切需要。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cooperative multivalent receptor binding promotes exposure of the SARS-CoV-2 fusion machinery core.
- DOI:10.1038/s41467-022-28654-5
- 发表时间:2022-02-22
- 期刊:
- 影响因子:16.6
- 作者:Pak AJ;Yu A;Ke Z;Briggs JAG;Voth GA
- 通讯作者:Voth GA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Voth其他文献
Models of Heterogenous Actin Filaments
- DOI:
10.1016/j.bpj.2011.11.2035 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Jun Fan;Shulu Feng;Marissa Saunders;Lanyuan Lu;Gregory Voth - 通讯作者:
Gregory Voth
Gregory Voth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Voth', 18)}}的其他基金
Molecular and Coarse-Grained Simulations of Biomolecular Processes at the Petascale
千万亿级生物分子过程的分子和粗粒度模拟
- 批准号:
1811600 - 财政年份:2018
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
SI2-SSE: Highly Efficient and Scalable Software for Coarse-Grained Molecular Dynamics
SI2-SSE:高效且可扩展的粗粒度分子动力学软件
- 批准号:
1740211 - 财政年份:2017
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
Ultra-Coarse-Grained Simulations of Biomolecular Processes at the Petascale
千万亿级生物分子过程的超粗粒度模拟
- 批准号:
1440027 - 财政年份:2014
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
Coarse-Graining in Quantum Mechanics
量子力学的粗粒度
- 批准号:
1214087 - 财政年份:2012
- 资助金额:
$ 19.06万 - 项目类别:
Continuing Grant
Petascale Multiscale Simulations of Biomolecular Systems
生物分子系统的千万亿次多尺度模拟
- 批准号:
1036184 - 财政年份:2011
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
Center for Multiscale Theory and Simulation
多尺度理论与模拟中心
- 批准号:
1136709 - 财政年份:2011
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
CRC: Connecting Biology with Chemistry through Multiscale Theory and Computer Simulation
CRC:通过多尺度理论和计算机模拟将生物学与化学联系起来
- 批准号:
1047323 - 财政年份:2010
- 资助金额:
$ 19.06万 - 项目类别:
Continuing Grant
Fundamental Studies of Solvation and Transport Phenomena in Liquids
液体中溶剂化和输运现象的基础研究
- 批准号:
1036464 - 财政年份:2010
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4: NSF: Obtaining Data Science Expertise to Enable Rapid Data Driven Material Discovery
RII Track-4:NSF:获得数据科学专业知识以实现快速数据驱动的材料发现
- 批准号:
2229686 - 财政年份:2023
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
RAPID: DRL AI: Data Driven Approaches to Integrating AI in K-12 Education Using Social Media Analysis
RAPID:DRL AI:利用社交媒体分析将 AI 集成到 K-12 教育中的数据驱动方法
- 批准号:
2332306 - 财政年份:2023
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
RAPID: Data-driven Understanding of Imperfect Protection for Long-term COVID-19 Projections
RAPID:数据驱动的对长期 COVID-19 预测不完美保护的理解
- 批准号:
2223933 - 财政年份:2022
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
RAPID: A Cross-Infrastructure Data-driven Approach to Modeling and Simulation of the 2021 Texas Power Outage
RAPID:跨基础设施数据驱动的 2021 年德克萨斯州停电建模和仿真方法
- 批准号:
2130945 - 财政年份:2021
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
Statistical methods in rapid surveillance system for data driven policy making under COVID-19 pandemic
COVID-19大流行下数据驱动决策的快速监测系统统计方法
- 批准号:
21K17292 - 财政年份:2021
- 资助金额:
$ 19.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Mitigation and Suppression of Coronavirus Pandemic with Data-driven RAPID Decisions Using COVID-19 Simulator
RAPID:协作研究:使用 COVID-19 模拟器通过数据驱动的 RAPID 决策缓解和抑制冠状病毒大流行
- 批准号:
2035360 - 财政年份:2020
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
Personalized Deep Learning Models of Rapid Changes in Major Depressive Disorder Symptoms using Passive Sensor Data from Smartphones and Wearable Devices
使用来自智能手机和可穿戴设备的被动传感器数据建立重度抑郁症症状快速变化的个性化深度学习模型
- 批准号:
10029386 - 财政年份:2020
- 资助金额:
$ 19.06万 - 项目类别:
Personalized Deep Learning Models of Rapid Changes in Major Depressive Disorder Symptoms using Passive Sensor Data from Smartphones and Wearable Devices
使用来自智能手机和可穿戴设备的被动传感器数据建立重度抑郁症症状快速变化的个性化深度学习模型
- 批准号:
10229551 - 财政年份:2020
- 资助金额:
$ 19.06万 - 项目类别:
NSF Convergence Accelerator Track D: Rapid Development of Intelligent, Built Environment Geo-Databases Using AI and Data-Driven Models
NSF 融合加速器轨道 D:使用人工智能和数据驱动模型快速开发智能构建环境地理数据库
- 批准号:
2040735 - 财政年份:2020
- 资助金额:
$ 19.06万 - 项目类别:
Standard Grant
Data driven approach to identifying building retrofit pathways in the context of rapid energy system decarbonisation
在能源系统快速脱碳背景下确定建筑改造路径的数据驱动方法
- 批准号:
2423643 - 财政年份:2020
- 资助金额:
$ 19.06万 - 项目类别:
Studentship