EAGER: Engineered nano-scale barrier to prevent viral infections

EAGER:设计纳米级屏障以预防病毒感染

基本信息

  • 批准号:
    2029677
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-15 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

This project proposes to use in silico simulations to engineer nanoscale, biocompatible, protective barrier that will enhance our first line of defenses - prevention of pathogenic infection from entering and infecting the host. The principal investigator aims to develop a topical method that will enhance protection against virus attachment onto the nasal and oral as well as conjunctival epithelial cells, while preserving normal physiology and biochemistry. The project team will use computer models to engineer delivery devices to produce the optimal particle characteristics to maximally prevent microbial infection. If successful, this project can lead to paradigm changing alternatives to reducing public health risk to air borne infections like COVID-19 and seasonal flu which may be associated with devastating effects on the United States and World economy. The proposed approach will be swiftly conducted to present realistic solutions that may be useable in the face of this COVID-19 pandemic as well as future flu viruses of similar magnitude.This research will fundamentally contribute to modeling the interactions between viral membranes and nanoscale barriers. The production of an innovative nanoscale biodegradable barrier may reduce the socioeconomic and public health burden significantly by lowering the risk of viral infection during the flu season or pandemics. The project team comprise of an interdisciplinary team that include engineers, ophthalmologists, molecular biologist, virologist and pharmacologist to explore a problem that could have a tremendous impact on the way we respond to seasonal flu or pandemics. Besides the potential benefits to reduce COVID-19 and influenza related deaths in the US and worldwide, the proposed work will afford us the opportunity to train engineering and biomedical students in a highly interdisciplinary research activity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目建议使用计算机模拟来设计纳米级,生物相容性,保护性屏障,这将增强我们的第一道防线-防止病原体感染进入并感染宿主。主要研究者旨在开发一种局部方法,该方法将增强对鼻和口腔以及结膜上皮细胞上的病毒附着的保护,同时保持正常的生理学和生物化学。项目团队将使用计算机模型来设计输送设备,以产生最佳的颗粒特性,最大限度地防止微生物感染。如果成功,该项目可以带来改变范式的替代方案,以减少可能对美国和世界经济造成破坏性影响的COVID-19和季节性流感等空气传播感染的公共卫生风险。我们将迅速实施所提出的方法,以提出现实的解决方案,这些解决方案可能适用于当前的COVID-19大流行以及未来类似规模的流感病毒。这项研究将从根本上为病毒膜和纳米级屏障之间的相互作用建模做出贡献。生产创新的纳米级生物可降解屏障可以通过降低流感季节或大流行期间病毒感染的风险来显着减少社会经济和公共卫生负担。该项目团队由一个跨学科团队组成,包括工程师,眼科医生,分子生物学家,病毒学家和药理学家,以探索可能对我们应对季节性流感或大流行病的方式产生巨大影响的问题。除了在美国和世界范围内减少COVID-19和流感相关死亡的潜在好处外,拟议的工作将为我们提供机会,在高度跨学科的研究活动中培训工程和生物医学学生。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Humayun其他文献

The national center for the design of biomimetic nanoconductors
  • DOI:
    10.1016/j.nano.2006.10.070
  • 发表时间:
    2006-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Eric Jakobsson;Narayan Aluru;Hagan Bayley;Jeff Brinker;Scott Feller;Mark Humayun;David A. LaVan;Gerhard Klimeck;Kevin Leung;Michael McLennan;Steve Plimpton;Umberto Ravaioli;Susan Rempe;Benoit Roux;Marco Saraniti;H. Larry Scott;X Zhu
  • 通讯作者:
    X Zhu

Mark Humayun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Humayun', 18)}}的其他基金

EFRI CEE: Engineered Retinal Epigenomics
EFRI CEE:工程视网膜表观基因组学
  • 批准号:
    1933394
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Microbubble-assisted Crispr/Cas9 Delivery in Retina for Photoreceptor Therapeutics
微泡辅助 Crispr/Cas9 在视网膜中的递送用于光感受器治疗
  • 批准号:
    1805210
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Retinal Nanophotoswitch
视网膜纳米光开关
  • 批准号:
    1404089
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
The Engineering Medical Therapeutic Technologies-Research Experience for Teachers
工程医学治疗技术-教师科研心得
  • 批准号:
    1301502
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
An Engineering Research Center for Biomimetic Microelectronic Systems
仿生微电子系统工程研究中心
  • 批准号:
    0310723
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
Biocompatible Technology for a Light Sensitive Retinal Prosthesis
光敏视网膜假体的生物相容性技术
  • 批准号:
    0201927
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
The Realization of a Retinal Prosthesis for the Totally Blind
全盲人视网膜假体的实现
  • 批准号:
    0335836
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Photosynthesis based light transduction on a retinal prosthetic chip: Interfacing molecular reactions centers, nano-channel glass, and the retina
视网膜假体芯片上基于光合作用的光传导:连接分子反应中心、纳米通道玻璃和视网膜
  • 批准号:
    0243329
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Photosynthesis based light transduction on a retinal prosthetic chip: Interfacing molecular reactions centers, nano-channel glass, and the retina
视网膜假体芯片上基于光合作用的光传导:连接分子反应中心、纳米通道玻璃和视网膜
  • 批准号:
    9980792
  • 财政年份:
    1999
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
The Realization of a Retinal Prosthesis for the Totally Blind
全盲人视网膜假体的实现
  • 批准号:
    9810914
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

Engineered RNA Modification Recognition
工程化 RNA 修饰识别
  • 批准号:
    10697237
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Nano-Engineered Co-Ionic Ceramic Reactors for CO2/H2O Electroconversion to Light Olefins
用于 CO2/H2O 电转化为轻质烯烃的纳米工程共离子陶瓷反应器
  • 批准号:
    10079292
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
Engineered DNA-particles to model immune events in systemic lupus erythematosus
工程 DNA 颗粒模拟系统性红斑狼疮的免疫事件
  • 批准号:
    10644574
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Modeling Dynamic Immune Cell Modulation in a 3-D Tissue Engineered Platform to Enhance Patient-specific Immunotherapy for Lung Cancer
在 3D 组织工程平台中模拟动态免疫细胞调节,以增强肺癌患者特异性免疫治疗
  • 批准号:
    10518637
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Modeling Dynamic Immune Cell Modulation in a 3-D Tissue Engineered Platform to Enhance Patient-specific Immunotherapy for Lung Cancer
在 3D 组织工程平台中模拟动态免疫细胞调节,以增强肺癌患者特异性免疫治疗
  • 批准号:
    10672244
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Engineered Vaccines for Neoantigen Targeted Cancer Immunotherapy
用于新抗原靶向癌症免疫治疗的工程疫苗
  • 批准号:
    10652625
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Multi-generational Effects of Maternal Engineered Nano-Material Inhalation Exposure on Microvascular and Reproductive Health Outcomes
母体工程纳米材料吸入暴露对微血管和生殖健康结果的多代影响
  • 批准号:
    10686962
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
CAREER: Uncover contact line dynamics during thin film evaporation on micro/nano-engineered surfaces with combined velocimetry, thermometry, and interferometry
职业:结合测速、测温和干涉测量,揭示微/纳米工程表面薄膜蒸发过程中的接触线动力学
  • 批准号:
    2144802
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Multi-generational Effects of Maternal Engineered Nano-Material Inhalation Exposure on Microvascular and Reproductive Health Outcomes
母体工程纳米材料吸入暴露对微血管和生殖健康结果的多代影响
  • 批准号:
    10525726
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Engineered Nano-formulations for STING Activation
用于 STING 激活的工程纳米制剂
  • 批准号:
    10539415
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了