Superresolution Videos and Optical Flow based on Combinatorial and Variational Optimization
基于组合和变分优化的超分辨率视频和光流
基本信息
- 批准号:243568440
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Humans have the capability to draw very precise information from video even in case of very bad image quality. This astonishing capability becomes evident only when we look at the single images of a video, where we find out how noisy and blurry they typically are. This is also true in the era of HD videos, which formally have a high resolution, yet due to natural limitations in recording, single frames cannot provide the same quality as photos with the same resolution. In this project, the information of successive frames of a video are sought to be combined in a way that the quality and resolution of all frames can be increased. As the central hypothesis we claim that optical flow estimation, denoising, and superresolution are coupled problems. Thus, based on extensive prior work in these areas, we will develop techniques that simultaneously compute very precise optical flow and denoised single frames at a higher resolution. Concrete subprojects are concerned with the modeling of motion blur, fast motion, and occlusions in the context of video superresolution. We believe that joint optimization of optical flow and superresolution will provide new opportunities in video analysis, it will enable the restoration of old movies, and it will allow to lift existing low resolution videos to modern HD resolution (and beyond).
即使图像质量非常糟糕,人类也可以从视频中汲取非常精确的信息。只有当我们查看视频的单个图像时,这种惊人的功能才能显而易见,在这里我们发现它们通常是多么嘈杂和模糊。在高清视频时代,正式具有很高的分辨率,但由于录制的自然限制,单帧不能提供与具有相同分辨率的照片相同的质量。在这个项目中,寻求将视频的连续帧信息组合在一起,以提高所有框架的质量和分辨率。作为中心假设,我们声称光流估计,脱氧和超分辨率是耦合问题。因此,基于这些领域的大量先前工作,我们将开发同时计算非常精确的光流并以较高分辨率的单帧的技术。具体的子标准与视频超同的背景下的运动模糊,快速运动和阻塞的建模有关。我们认为,光流和超分辨率的联合优化将在视频分析中提供新的机会,它将恢复旧电影,并且将使现有的低分辨率视频将现有的低分辨率视频提升为现代HD分辨率(及以后)。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation
- DOI:10.1109/cvpr.2016.438
- 发表时间:2016-01-01
- 期刊:
- 影响因子:0
- 作者:Mayer, Nikolaus;Ilg, Eddy;Brox, Thomas
- 通讯作者:Brox, Thomas
FlowNet: Learning Optical Flow with Convolutional Networks
- DOI:10.1109/iccv.2015.316
- 发表时间:2015-01-01
- 期刊:
- 影响因子:0
- 作者:Dosovitskiy, Alexey;Fischer, Philipp;Brox, Thomas
- 通讯作者:Brox, Thomas
FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
- DOI:10.1109/cvpr.2017.179
- 发表时间:2017-01-01
- 期刊:
- 影响因子:0
- 作者:Ilg, Eddy;Mayer, Nikolaus;Brox, Thomas
- 通讯作者:Brox, Thomas
End-to-End Learning of Video Super-Resolution with Motion Compensation
- DOI:10.1007/978-3-319-66709-6_17
- 发表时间:2017-07
- 期刊:
- 影响因子:0
- 作者:Osama Makansi;Eddy Ilg;T. Brox
- 通讯作者:Osama Makansi;Eddy Ilg;T. Brox
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Thomas Brox其他文献
Professor Dr.-Ing. Thomas Brox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Thomas Brox', 18)}}的其他基金
Training Deep Networks for Real-world Computer Vision Scenarios with Rendered Data
使用渲染数据训练真实计算机视觉场景的深度网络
- 批准号:
401269959 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Spatio-Temporal Hypercolumns for Instance-based Semantic Segmentation in Video
用于视频中基于实例的语义分割的时空超列
- 批准号:
387723725 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Auto-Tune: Structural Optimization of Machine Learning Frameworks for Large Datasets
Auto-Tune:大型数据集机器学习框架的结构优化
- 批准号:
260351709 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Priority Programmes
Objektsegmentierung in Videodaten mittels Analyse von Punkttrajektorien
使用点轨迹分析进行视频数据中的对象分割
- 批准号:
211353192 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
量子启发的复合语义视频实例检索技术研究
- 批准号:62372339
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自然场景下基于自监督的精准视频情感识别研究
- 批准号:62362003
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向多级语义感知的无人机遥感视频事件识别方法研究
- 批准号:62371083
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向六自由度交互的沉浸式视频感知编码理论与方法研究
- 批准号:62371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高维结构约束的光场视频稀疏模型压缩理论与方法
- 批准号:62371278
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Utilizing Interactive Videos to Assist Self and Peer Assessment of Students' Speaking
利用互动视频辅助学生口语自评和互评
- 批准号:
24K16138 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RI: Small: Understanding Hand Interaction In The Jumble of Internet Videos
RI:小:在混乱的互联网视频中理解手部交互
- 批准号:
2426592 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Using AI to reveal the true extent & context of alcohol exposure in videos
利用人工智能揭示真实范围
- 批准号:
DP230100927 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects