Spatio-Temporal Hypercolumns for Instance-based Semantic Segmentation in Video
用于视频中基于实例的语义分割的时空超列
基本信息
- 批准号:387723725
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Video segmentation is one of the most challenging open problems in computer vision. Although multiple approaches have been proposed in the literature to address this task, state-of-the-art algorithms are still far from reaching human-level performance in realistic unconstrained videos. In this work, we propose a two year research program that focuses on studying the interaction between video segmentation and object recognition, introducing thus category-specific information in order to improve the video segmentation process. As starting point of our approach, we will generalize to the spatio-temporal domain state-of-the-art algorithms for static generic segmentation and semantic segmentation, by taking into account optical flow estimation. During the first year of our two year research project, we will seek for an effective combination of our recent works Convolutional Oriented Boundaries (COB) and FlowNet, in order to build a spatio-temporal video segmentation algorithm that involves local and spatial information as well as temporal consistency. Once we have extracted a consistent spatio-temporal video segmentation, we will propagate the pixel labels along frames through trajectory motion affinities and build a spatio-temporal representations for the objects and surfaces which we call Convolutional Temporal Tubes (CTT). During the second year, we will extend our previous work on Hypercolumns [3] by instantiating a spatiotemporalhypercolumn framework on the CTT, in order to refine the spatial support of objects and surfaces given their semantic characteristics while preserving temporal consistency. This representation of a video in terms of spatio-temporal regions that are stable over time while being aware of semantics and of individual instances of objects is the final objective for this two year research project. The realization of our research programme is expected to bridge the gap between human and computer performance in video segmentation for the current benchmarks. These results will enable further research in scene and object structure recovery, 3D reconstruction, video understanding, actionand object recognition, among many other applications. This project seeks to strengthen scientific exchanges between Germany and Colombia, and will be conducted in close collaboration by researchers in both countries.
视频分割是计算机视觉中最具挑战性的开放性问题之一。虽然在文献中已经提出了多种方法来解决这个任务,最先进的算法仍然远远没有达到人类水平的性能,在现实的无约束的视频。在这项工作中,我们提出了一个为期两年的研究计划,重点研究视频分割和对象识别之间的相互作用,从而引入特定类别的信息,以改善视频分割过程。作为我们的方法的出发点,我们将推广到时空域的静态通用分割和语义分割的最先进的算法,考虑到光流估计。在我们为期两年的研究项目的第一年,我们将寻求我们最近的工作卷积导向边界(COB)和FlowNet的有效结合,以建立一个时空视频分割算法,涉及本地和空间信息以及时间一致性。一旦我们提取了一致的时空视频分割,我们将通过轨迹运动亲和度沿着沿着帧传播像素标签,并为对象和表面构建时空表示,我们称之为卷积时间管(CTT)。在第二年,我们将通过在CTT上实例化时空超列框架来扩展我们之前在超列[3]上的工作,以便根据对象和表面的语义特征来细化它们的空间支持,同时保持时间一致性。这种在时空区域方面的视频表示,随着时间的推移是稳定的,同时意识到语义和对象的个体实例,是这个为期两年的研究项目的最终目标。我们的研究计划的实现有望弥合人类和计算机之间的差距差距在视频分割为目前的基准。这些结果将使进一步的研究在场景和对象结构恢复,三维重建,视频理解,actionand对象识别,以及许多其他应用。该项目旨在加强德国和哥伦比亚之间的科学交流,并将由两国研究人员密切合作进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Thomas Brox其他文献
Professor Dr.-Ing. Thomas Brox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Thomas Brox', 18)}}的其他基金
Training Deep Networks for Real-world Computer Vision Scenarios with Rendered Data
使用渲染数据训练真实计算机视觉场景的深度网络
- 批准号:
401269959 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Auto-Tune: Structural Optimization of Machine Learning Frameworks for Large Datasets
Auto-Tune:大型数据集机器学习框架的结构优化
- 批准号:
260351709 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Priority Programmes
Superresolution Videos and Optical Flow based on Combinatorial and Variational Optimization
基于组合和变分优化的超分辨率视频和光流
- 批准号:
243568440 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Objektsegmentierung in Videodaten mittels Analyse von Punkttrajektorien
使用点轨迹分析进行视频数据中的对象分割
- 批准号:
211353192 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
- 批准号:
NE/Z000246/1 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: Petrochronometers as provenance proxies: implications for the spatio-temporal evolution of continental collision to escape
博士后奖学金:EAR-PF:石油测时计作为起源代理:对大陆碰撞逃逸的时空演化的影响
- 批准号:
2305217 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship Award
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Using artificial intelligence to identify spatio-temporal mechanisms of cell competition
利用人工智能识别细胞竞争的时空机制
- 批准号:
BB/Y002709/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Investigating spatio-temporal instabilities in next-generation lasers
研究下一代激光器的时空不稳定性
- 批准号:
FT230100388 - 财政年份:2024
- 资助金额:
-- - 项目类别:
ARC Future Fellowships
Towards Processing of Big Streaming Temporal Graphs
面向大流时态图的处理
- 批准号:
DE240100668 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Development of high temporal and spatial resolution multi-beam CT instrument
高时空分辨率多束CT仪器研制
- 批准号:
23K28346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
- 批准号:
2339774 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




