Auto-Tune: Structural Optimization of Machine Learning Frameworks for Large Datasets

Auto-Tune:大型数据集机器学习框架的结构优化

基本信息

  • 批准号:
    260351709
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Priority Programmes
  • 财政年份:
    2014
  • 资助国家:
    德国
  • 起止时间:
    2013-12-31 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

We aim to automate the design of machine learning algorithms, in order to facilitate their use by non-experts and in autonomous systems. Although automated adaptation is a core idea of machine learning, most algorithms still require a choice of external design parameters by an expert, which limits their commercial success. Our approach formalizes the search for good algorithm configurations as an optimization problem over the combined space of different machine learning algorithms and develops novel Bayesian optimization algorithms for its solution.This projects follows in the steps of our recent Auto-WEKA framework, which demonstrated that modern Bayesian optimization methods can provide non-experts with an automated (albeit computationally very expensive) method to identify state-of-the-art instantiations of complex learning frameworks. The next step is to make this approach feasible under realistic budget constraints, which, for modern-day (big) datasets and learning frameworks (especially deep learning) often imply that we cannot evaluate more than a few full model instantiations.We take inspiration from the way human practitioners attack a new learning problem: compare the dataset to those previously encountered, and evaluate some promising methods on subsets of the data, before then only constructing one or a few models on the full dataset.We plan to integrate all these components into a probabilistic model, using our recent Bayesian optimization algorithm of Entropy Search on a design space covering these dimensions to automatically derive a strategy that resembles the design strategy of a human expert. We will validate our approaches by improving upon the existing Auto-WEKA system, and by implementing a first approach for learning an effective deep network for a new dataset at the push of a button.We propose two theoretical research projects: 1) General Probabilistic Models of Algorithm PerformanceThis thread involves finding structured models that capture the highly structured interdependences across the often very high-dimensional parameter spaces of machine learning algorithms.2) Budget-Thrifty Hyperparameter OptimizationIt is often feasible to run machine learning algorithms in a cost-reduced form, either by thinning the dataset or by "switching off" certain parts of an algorithm. We aim to encode this possibility in a cost-aware optimization algorithm, which should then be able to automatically control the progression from rough prototyping to fine tuning.These two theoretical advances will enable two applied projects, whichare: 1) Automatic Machine Learning2) Automated structural optimization in computer vision, especially deep learning
我们的目标是自动化机器学习算法的设计,以方便非专家和自治系统的使用。虽然自动适应是机器学习的核心思想,但大多数算法仍然需要专家选择外部设计参数,这限制了它们的商业成功。我们的方法将寻找好的算法配置形式化为不同机器学习算法组合空间上的优化问题,并为其解决方案开发了新的贝叶斯优化算法。该项目遵循我们最近的Auto-WEKA框架的步骤,这表明,现代贝叶斯优化方法可以为非专家提供自动化的(尽管计算上非常昂贵)的方法来识别复杂学习框架的最先进的实例。下一步是在现实的预算限制下使这种方法可行,对于现代(大)数据集和学习框架,(尤其是深度学习)通常意味着我们只能评估几个完整的模型实例。我们从人类实践者解决新学习问题的方式中获得灵感:将数据集与以前遇到的数据集进行比较,并评估数据子集上的一些有前途的方法,在此之前,我们只在整个数据集上构建一个或几个模型。我们计划将所有这些组件集成到概率模型中,在覆盖这些维度的设计空间上使用我们最近的熵搜索贝叶斯优化算法来自动导出类似于人类专家的设计策略的策略。我们将通过改进现有的Auto-WEKA系统来验证我们的方法,并通过实现第一种方法来学习新数据集的有效深度网络。我们提出了两个理论研究项目:1)算法性能的一般概率模型这一线程涉及到寻找结构化模型,这些模型捕获了通常非常高的机器学习算法的多维参数空间。2)预算节约超参数优化通过精简数据集或通过“关闭”算法的某些部分,以成本降低的形式运行机器学习算法通常是可行的。我们的目标是将这种可能性编码到一个成本感知的优化算法中,然后该算法应该能够自动控制从粗略原型到微调的过程。这两个理论进步将实现两个应用项目,即:1)自动机器学习2)计算机视觉中的自动结构优化,特别是深度学习

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast Bayesian hyperparameter optimization on large datasets
  • DOI:
    10.1214/17-ejs1335si
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Klein, Aaron;Falkner, Stefan;Hutter, Frank
  • 通讯作者:
    Hutter, Frank
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Thomas Brox其他文献

Professor Dr.-Ing. Thomas Brox的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Thomas Brox', 18)}}的其他基金

Training Deep Networks for Real-world Computer Vision Scenarios with Rendered Data
使用渲染数据训练真实计算机视觉场景的深度网络
  • 批准号:
    401269959
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Spatio-Temporal Hypercolumns for Instance-based Semantic Segmentation in Video
用于视频中基于实例的语义分割的时空超列
  • 批准号:
    387723725
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Superresolution Videos and Optical Flow based on Combinatorial and Variational Optimization
基于组合和变分优化的超分辨率视频和光流
  • 批准号:
    243568440
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Objektsegmentierung in Videodaten mittels Analyse von Punkttrajektorien
使用点轨迹分析进行视频数据中的对象分割
  • 批准号:
    211353192
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

单、双价电子原子体系的Magic波长和tune-out波长的高精度理论计算
  • 批准号:
    11564036
  • 批准年份:
    2015
  • 资助金额:
    46.0 万元
  • 项目类别:
    地区科学基金项目
重离子同步加速器Ramping过程中Tune值测量
  • 批准号:
    10875154
  • 批准年份:
    2008
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Molecular Tools to Tune the Structure-Function Properties of Nanoscale Objects by Reconfiguration of pi-Conjugated Superstructures
职业:通过重新配置 pi 共轭超结构来调整纳米级物体的结构功能特性的分子工具
  • 批准号:
    2401869
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Targeting pannexin 1 to tune dendritic spine stability
靶向 pannexin 1 调节树突棘稳定性
  • 批准号:
    479172
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Engineering mono-fucosylated IgGs to fine-tune antibody-mediated effector functions
工程化单岩藻糖基化 IgG 来微调抗体介导的效应功能
  • 批准号:
    10647938
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of dynamic hydrogel systems to tune local microenvironement in three dimensional cell culture system
开发动态水凝胶系统来调节三维细胞培养系统中的局部微环境
  • 批准号:
    22F20708
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
SBIR Phase I: A highly-scalable, rapid, in-season approach to tune a nitrogen model for accurate prediction of a corn crop’s remaining nitrogen need
SBIR 第一阶段:一种高度可扩展、快速的季节性方法,用于调整氮模型,以准确预测玉米作物的剩余氮需求
  • 批准号:
    2127096
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Uncovering mechanisms to tune local translation during neurodevelopment.
揭示神经发育过程中调节局部翻译的机制。
  • 批准号:
    566631-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
  • 批准号:
    2313754
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
  • 批准号:
    2153891
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Targeting pannexin 1 to tune dendritic spine stability
靶向 pannexin 1 调节树突棘稳定性
  • 批准号:
    477282
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
  • 批准号:
    2153894
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了