RAPID: Collaborative Research: Modeling and Learning-based Design of Social Distancing Policies for COVID-19

RAPID:协作研究:针对 COVID-19 的社交距离政策的建模和基于学习的设计

基本信息

  • 批准号:
    2030140
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Human contacts underlie the spread of any infectious diseases including COVID-19. For COVID-19, the widely implemented social distancing policies are designed precisely to drastically reduce individual travels and the resulting contacts. In a number of States, these policies have effectively reduced the peak number of infections. These policies have also come with huge costs on the society, economy and people’s lives: US economy has largely come to a halt and the number of unemployment claims has now exceeded the worst of the 2008-2009 financial crisis. This rapid COVID-19 application will develop a novel meta-population level model simulating the spread of COVID-19 and utilize reinforcement learning to explore optimal congregation restriction policies for social distancing. The technical approach will develop an SIQR (Susceptible, Infected, Quarantined, and Recovered) model integrated with reinforcement learning for continuous monitoring and policy adjustment. The SIQR model is built on the classic literature of the SIR (susceptible, infectious and recovered) and SEIR (susceptible, exposed, infectious, and recovered) models and enhances their capability to capture the unique quarantine features for COVID-19. The key focus of the proposed project is on the connection of the SIQR model to reinforcement learning to realize a control loop that provides optimal policy in spite of sparse and noisy observations. This is an important contribution to this emerging, interdisciplinary science of infectious disease modeling and control. The results of this project will have both immediate importance for designing the response to COVID-19 and also contribute to the broader development of an interdisciplinary education and research program involving infectious disease modeling, reinforcement learning and machine learning of big data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类接触是包括COVID-19在内的任何传染病传播的基础。针对COVID-19,广泛实施的社会距离政策正是为了大幅减少个人旅行和由此产生的接触。在一些国家,这些政策有效地减少了感染高峰人数。这些政策也给社会、经济和人民生活带来了巨大的代价:美国经济基本陷入停滞,失业人数已超过2008-2009年金融危机最严重时期。这个快速的COVID-19应用程序将开发一个新的元人群水平模型来模拟COVID-19的传播,并利用强化学习来探索社交距离的最佳聚集限制政策。技术方法将开发SIQR(易感、感染、隔离和恢复)模型,并与强化学习相结合,用于持续监测和政策调整。SIQR模型建立在SIR(易感、感染和恢复)和SEIR(易感、暴露、感染和恢复)模型的经典文献基础上,增强了它们捕捉COVID-19独特隔离特征的能力。提出的项目的重点是SIQR模型与强化学习的连接,以实现一个控制回路,该控制回路在稀疏和噪声观测的情况下提供最优策略。这是对这一新兴的传染病建模和控制的跨学科科学的重要贡献。该项目的成果将对设计COVID-19应对措施具有直接重要性,并有助于更广泛地发展涉及传染病建模、强化学习和大数据机器学习的跨学科教育和研究项目。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cynthia Chen其他文献

AN ACTIVITY-BASED MICROSIMULATION ANALYSIS OF TRANSPORTATION CONTROL MEASURES
基于活动的交通管制措施微观模拟分析
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Pendyala;R. Kitamura;Cynthia Chen;E. I. Pas
  • 通讯作者:
    E. I. Pas
Assessing Impacts of Abnormal Events on Travel Patterns Leveraging Passively Collected Trajectory Data.
利用被动收集的轨迹数据评估异常事件对出行模式的影响。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feilong Wang;Xiangyang Guan;Cynthia Chen
  • 通讯作者:
    Cynthia Chen
Disparities in survival among elders with disabilities: possible implications for long-term care insurance
残疾老年人的生存差异:对长期护理保险的可能影响
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cynthia Chen;Jue Tao Lim;N. Chia;Lijia Wang;Ming Zhe Chong;A. Cheong;N. Fong;B. Tan;E. Menon;C. H. Ee;Kok Keng Lee;Kin Ming Chan;Stefan Ma;K. B. Tan;G. Koh
  • 通讯作者:
    G. Koh
Retirement experience, retirement satisfaction and life satisfaction of baby boomers
婴儿潮一代的退休经历、退休满意度和生活满意度
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amberyce Ang;Cynthia Chen;Kalyani Mehta
  • 通讯作者:
    Kalyani Mehta
The 15-minute city around one's trajectory: Evaluating food accessibility for transit users in Stockholm, Sweden
围绕个人活动轨迹的15分钟城市:评估瑞典斯德哥尔摩公共交通使用者获取食物的便利性
  • DOI:
    10.1016/j.jtrangeo.2025.104283
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Kaitlyn Ng;Cynthia Chen;Erik Jenelius
  • 通讯作者:
    Erik Jenelius

Cynthia Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cynthia Chen', 18)}}的其他基金

SCC-IRG Track 1: Socially-integrated robust communication and information-resource sharing technologies for post-disaster community self-reliance
SCC-IRG 第 1 轨道:社会整合的稳健通信和信息资源共享技术,促进灾后社区自力更生
  • 批准号:
    2311405
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FW-HTF-P/Collaborative Research: Designing a Market-based Optimization Tool for the Future of Work: Balancing Remote Work and Community Vitality in Post-COVID American Cities
FW-HTF-P/协作研究:为未来的工作设计基于市场的优化工具:平衡后疫情时代美国城市的远程工作和社区活力
  • 批准号:
    2128782
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: A Whole-Community Effort to Understand Biases and Uncertainties in Using Emerging Big Data for Mobility Analysis
协作研究:全社区共同努力,了解使用新兴大数据进行出行分析时的偏差和不确定性
  • 批准号:
    2114260
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
LEAP-HI: Re-Engineering for Adaptable Lives and Businesses
LEAP-HI:为适应生活和商业而重新设计
  • 批准号:
    2053373
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
JST: SCC-PG: Socially-integrated Technological Solutions for Real-time Response and Neighborhood Survival After Extreme Events
JST:SCC-PG:极端事件后实时响应和邻里生存的社会一体化技术解决方案
  • 批准号:
    1951418
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Learning Failure Propagation Patterns in Interdependent Network From Observed Post-Disaster Disruptions
从观察到的灾后中断中学习相互依赖网络中的故障传播模式
  • 批准号:
    1536340
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Cell Phone Data to Analyze the Continuum and Life Cycle of Disaster in Spatio-Temporal Movements
合作研究:利用手机数据分析灾害时空运动的连续体和生命周期
  • 批准号:
    1200275
  • 财政年份:
    2012
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
  • 批准号:
    2409274
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425431
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425430
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403882
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425429
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了