Scholarships To Improve Undergraduate Students' Academic Achievement, Retention, and Career Success in Computer Science and Artificial Intelligence
奖学金旨在提高本科生在计算机科学和人工智能领域的学业成绩、保留率和职业成功
基本信息
- 批准号:2030581
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at San Francisco State University. This university is one of the 23 campuses of the California State University system and is designated as a Hispanic-serving institution. Over its four-year duration, this project will provide one-year scholarships to 80 first-year, full-time students who are pursuing bachelor’s degrees in computer science. The project will support a three-pronged wrap-around support system that ensures students make steady academic, social, and professional progress in the first year. This support system will include academic advising, winter and summer programs, co-curricular activities, and professional development activities. The project has the potential to broaden the participation of low-income students in the fields of artificial intelligence and computer science and to increase the economic competitiveness of the US artificial intelligence sector. The results from this project may be valuable for other higher education institutions seeking to increase retention of socioeconomically diverse students in their artificial intelligence/computer science programs. The overall goal of this project is to increase STEM degree completion of low-income, high achieving undergraduates with demonstrated financial need. The objectives through which the project goal will be realized are: (1) to improve information equity through intensive and tailored academic and professional advising; (2) to increase academic and professional self-efficacy through co-curricular activities that provide early exposure to, career coaching in, and research and industry experiences in artificial intelligence; (3) to develop students’ sense of belonging and identity as computer scientists by helping them become part of the computer science community and by humanizing computer science and artificial intelligence via showcasing role models and social good projects. Students’ sense of identity as computer scientists has been shown to be critical to their persistence and success in the field, especially for students from underrepresented populations. However, little is known about the mechanisms by which students develop a positive sense of computer science identity. This project will investigate if and how low-income students’ sense of computer science identity changes during their first year of undergraduate computer science study, and if a stronger sense of computer science identity predicts greater retention in the computer science major. The impact of early artificial intelligence exposure on student’s achievement and retention will also be studied. A mixed-methods approach including both formative and summative components will be used to evaluate the acceptability, feasibility, and effectiveness of the project. The resources developed as part of this project will be disseminated through the project website, and the results from the project will be disseminated through publications in journals and at conferences in artificial intelligence and computer science education. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将通过支持在旧金山弗朗西斯科州立大学有经济需要的高成就、低收入学生的保留和毕业,为国家对受过良好教育的科学家、数学家、工程师和技术人员的需求做出贡献。这所大学是加州州立大学系统的23个校区之一,被指定为西班牙裔服务机构。该项目为期四年,将为80名攻读计算机科学学士学位的一年级全日制学生提供为期一年的奖学金。该项目将支持一个三管齐下的支持系统,确保学生在第一年取得稳定的学术,社会和专业进步。 这个支持系统将包括学术咨询,冬季和夏季计划,课外活动和专业发展活动。该项目有可能扩大低收入学生在人工智能和计算机科学领域的参与,并提高美国人工智能部门的经济竞争力。该项目的结果可能对其他高等教育机构有价值,这些机构希望在人工智能/计算机科学课程中增加社会经济多样化学生的保留率。该项目的总体目标是增加低收入,高成就的本科生与证明财政需要完成STEM学位。该项目的目标是:(1)通过密集和量身定制的学术和专业咨询来提高信息公平性;(2)通过课外活动,提供早期接触,职业指导以及人工智能研究和行业经验,提高学术和专业自我效能;(3)透过示范及社会公益项目,培养学生对电脑科学的归属感及认同感,让他们成为电脑科学社群的一分子,并使电脑科学及人工智能更人性化。学生作为计算机科学家的认同感已被证明是他们在该领域的持久性和成功的关键,特别是对于来自代表性不足的人群的学生。然而,很少有人知道的机制,使学生发展计算机科学身份的积极意义。该项目将调查低收入家庭的学生在计算机科学本科学习的第一年中,计算机科学身份的意识是否以及如何发生变化,以及是否有更强的计算机科学身份意识可以预测计算机科学专业的保留率。还将研究早期人工智能暴露对学生成绩和保留率的影响。将采用包括形成性和总结性组成部分的混合方法来评估项目的可接受性、可行性和有效性。作为该项目一部分开发的资源将通过项目网站传播,项目成果将通过期刊和人工智能和计算机科学教育会议上的出版物传播。该项目由NSF的科学,技术,工程和数学奖学金计划资助,该计划旨在增加低收入学术人才的数量,这些学生表现出经济需求,并获得STEM领域的学位。它还旨在改善未来STEM工作者的教育,并产生关于低收入学生的学术成功,保留,转移,毕业和学术/职业道路的知识。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Foundational Strategies to Support Students with Diverse Backgrounds and Interests in Early Programming
支持具有不同背景和兴趣的学生进行早期编程的基本策略
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Gautam, A.;Ihorn, S.;Yoon, I.;Savvides, M.;Kulkarni, A.
- 通讯作者:Kulkarni, A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anagha Kulkarni其他文献
Automated Question Answering System for Community-Based Questions
针对社区问题的自动问答系统
- DOI:
10.1609/aaai.v32i1.12159 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Chanin Pithyaachariyakul;Anagha Kulkarni - 通讯作者:
Anagha Kulkarni
Literature Survey: Application of Machine Learning Techniques on Static Sign Language Recognition
文献综述:机器学习技术在静态手语识别中的应用
- DOI:
10.1007/978-3-030-73603-3_16 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yael Robert;Yashshree Nigudkar;Anagha Kulkarni;Namita Mutha;Pranjali Barve - 通讯作者:
Pranjali Barve
Disparities in information on Long-Acting Reversible Contraceptives available to college students on student health center websites in USA
美国学生健康中心网站上向大学生提供的长效可逆避孕药信息存在差异
- DOI:
10.1101/2020.01.27.920926 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Anagha Kulkarni;Tejasvi Belsare;Risha Shah;Diana Yu Yu;Carrie Holschuh;Venoo Kakar;S. Modrek;Anastasia Smirnova - 通讯作者:
Anastasia Smirnova
Heart Rate Variability (HRV) as a Marker of Improved Autonomic Function in PMS: A Homeopathy Intervention-Based Single Blind Randomized Control Study
心率变异性 (HRV) 作为经前综合症自主神经功能改善的标志:一项基于顺势疗法干预的单盲随机对照研究
- DOI:
10.4103/jnmo.jnmo_12_24 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nayana P. Barde;P. Barde;Ajay O. Dahad;Tripathi Shatrugan;Anagha Kulkarni;Tapas K. Kundu - 通讯作者:
Tapas K. Kundu
PF-Words : Biomedical Literature Based Protein Function Search
PF-Words:基于生物医学文献的蛋白质功能搜索
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Wei Wei;Mike Wong;Anagha Kulkarni - 通讯作者:
Anagha Kulkarni
Anagha Kulkarni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Introducing Scientific Uncertainty into Undergraduate Science Education to Improve Scientific Literacy
将科学不确定性引入本科科学教育以提高科学素养
- 批准号:
2314566 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Sharing Scientist Role Model Stories to Improve Equity and Success in Undergraduate STEM Education
合作研究:分享科学家榜样故事,以提高本科 STEM 教育的公平性和成功率
- 批准号:
2337064 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Sharing Scientist Role Model Stories to Improve Equity and Success in Undergraduate STEM Education
合作研究:分享科学家榜样故事,以提高本科 STEM 教育的公平性和成功率
- 批准号:
2337063 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Targeted Infusion Project: Microbiome Data Science Infusion to Improve Undergraduate Research, Pedagogy, and Workforce Preparation
有针对性的注入项目:微生物组数据科学注入,以改善本科生研究、教学法和劳动力准备
- 批准号:
2306512 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
An Individual Investigator Development Plan to Improve Undergraduate Debugging Skills and Mindset
提高本科生调试技能和心态的个人研究者发展计划
- 批准号:
2321255 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Identifying Aspects of Research that Exacerbate Undergraduate and Graduate Student Depression and Developing Interventions to Improve Student Mental Health
职业:确定加剧本科生和研究生抑郁症的研究方面,并制定改善学生心理健康的干预措施
- 批准号:
2143671 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Integrating Undergraduate Learning in Engineering and Business to Improve Manufacturing Education
将工程和商业本科学习相结合以改善制造教育
- 批准号:
2211066 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
An Online Tool to Support Productive Struggles and Improve the Self-Efficacy of Undergraduate Students in Introductory Computer Science Courses.
一种在线工具,可支持本科生在计算机科学入门课程中的生产性斗争和提高自我效能。
- 批准号:
2215849 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Scholarships, Community, and High-impact Practices to Improve Undergraduate Student Success in Computer Science and Engineering
奖学金、社区和高影响力实践可提高本科生在计算机科学与工程方面的成功
- 批准号:
2030427 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Research Initiation: The Use of Mobile Technology and Innovative Pedagogy to Improve Undergraduate Thermal-Fluid Science Learning
合作研究:研究启动:利用移动技术和创新教学法改善本科生热流体科学学习
- 批准号:
2106180 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Standard Grant