RAPID: Longitudinal Modeling of Teams and Teamwork during the COVID-19 Crisis

RAPID:COVID-19 危机期间团队和团队合作的纵向建模

基本信息

  • 批准号:
    2030599
  • 负责人:
  • 金额:
    $ 19.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

The ability to effectively work as a team is essential to meet the demands of the modern world and workforce. However, the COVID-19 crisis has drastically changed how teams collaborate, including periods of extended remote work, mixed remote and in-person teams, blurred home and work boundaries, elevated stress and anxiety, and extreme uncertainty about the future. The swift onset of the crisis required individuals, teams, and organizations to abruptly adapt to rapidly changing circumstances with little to no preparation. The proposed research will investigate disruptions to teamwork and how teams adapt during the COVID-19 crisis and in the ensuing recovery period. The project will investigate 30 real-world teams over a three-month period while in the midst of the crisis and for an additional one-month follow-up as events unfold. The goal is to understand how teams respond to changing contexts, how teams support each other, how conflict is managed, and how teams develop, adapt, and sustain the rhythms of teamwork during COVID-19 and in the ensuing recovery period. This foundational research will be essential to help organizations establish team structures and collaborative processes that enable them to more successfully address disruptions in the current and in future crises. The project will provide unique opportunities for interdisciplinary training of students in computer science and psychology, will broaden participation by recruiting diverse students, and will share a rich and unique dataset with the broad scientific community. The specific aims are to: (1) understand states, processes, and behaviors (e.g., team cohesion, communication patterns, collective stress) of teams during the COVID-19 crisis with a focus on factors associated with team performance; (2) investigate how individuals and teams experience and adapt to major COVID-related life events, such as school closings, enforcing of social distancing, budget cuts, illnesses, and so on; and (3) identify patterns in team states and behaviors over time, detect disruptions to these patterns, and study how new patterns emerge during the crisis and in the ensuing period of recovery. The project will use wearable sensors to track heart rate, sleep, physical activity, and relative location (home or away), communication tools (e.g., team calendars, email metadata), ecological momentary assessments (EMAs), validated survey instruments, and semi-structured interviews to investigate team states, team processes, team behaviors, and team performances in context and over time. The findings will contribute basic knowledge on teaming under the unique context of COVID-19, what factors are associated with team performance, and whether changes teams adopt are temporary or permanent.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
作为一个团队有效工作的能力是必不可少的,以满足现代世界和劳动力的需求。然而,COVID-19危机极大地改变了团队的协作方式,包括远程工作时间延长、远程和面对面团队混合、家庭和工作界限模糊、压力和焦虑加剧以及对未来的极度不确定性。危机的迅速爆发要求个人、团队和组织在几乎没有准备的情况下突然适应快速变化的环境。拟议的研究将调查团队合作的中断以及团队在COVID-19危机期间和随后的恢复期如何适应。该项目将在危机期间对30个真实世界的团队进行为期三个月的调查,并随着事件的发展进行为期一个月的随访。目标是了解团队如何应对不断变化的环境,团队如何相互支持,如何管理冲突,以及团队如何在COVID-19期间和随后的恢复期发展,适应和维持团队合作的节奏。这一基础研究对于帮助组织建立团队结构和协作流程至关重要,使他们能够更成功地解决当前和未来危机中的中断问题。该项目将为计算机科学和心理学学生的跨学科培训提供独特的机会,将通过招募不同的学生来扩大参与,并将与广泛的科学界分享丰富而独特的数据集。具体目标是:(1)理解状态、过程和行为(例如,(2)调查个人和团队如何经历和适应与COVID-19相关的重大生活事件,如学校关闭,强制执行社交距离,预算削减,疾病等;以及(3)识别团队状态和行为随时间变化的模式,检测这些模式的中断,并研究在危机期间和随后的恢复期间新模式如何出现。该项目将使用可穿戴传感器来跟踪心率,睡眠,身体活动和相对位置(在家或外出),通信工具(例如,团队日历、电子邮件元数据)、生态瞬时评估(EMA)、经过验证的调查工具和半结构化访谈,以调查团队状态、团队流程、团队行为和团队绩效。研究结果将有助于了解在COVID-19的独特背景下团队合作的基本知识,与团队绩效相关的因素,以及团队采取的变化是暂时的还是永久的。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Designing an Interactive Visualization System for Monitoring Participant Compliance in a Large-Scale, Longitudinal Study
设计交互式可视化系统,用于监测大规模纵向研究中参与者的依从性
Toward Robust Stress Prediction in the Age of Wearables: Modeling Perceived Stress in a Longitudinal Study With Information Workers
  • DOI:
    10.1109/taffc.2022.3188006
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Booth, Brandon M.;Vrzakova, Hana;D'Mello, Sidney K.
  • 通讯作者:
    D'Mello, Sidney K.
Flexibility Versus Routineness in Multimodal Health Indicators: A Sensor-based Longitudinal in Situ Study of Information Workers
  • DOI:
    10.1145/3514259
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. J. Amon;Stephen M. Mattingly;Aaron Necaise;Gloria Mark;N. Chawla;Anindya Dey;Sidney K. D’Mello
  • 通讯作者:
    M. J. Amon;Stephen M. Mattingly;Aaron Necaise;Gloria Mark;N. Chawla;Anindya Dey;Sidney K. D’Mello
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sidney D'Mello其他文献

Sidney D'Mello的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sidney D'Mello', 18)}}的其他基金

Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Standard Grant
AI Institute: Institute for Student-AI Teaming
人工智能学院:学生人工智能团队学院
  • 批准号:
    2019805
  • 财政年份:
    2020
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: FW-HTF-RM: Intelligent Facilitation for Teams of the Future via Longitudinal Sensing in Context
合作研究:FW-HTF-RM:通过上下文中的纵向感知为未来团队提供智能协助
  • 批准号:
    1928612
  • 财政年份:
    2019
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Standard Grant
AI-DCL: Collaborative Research: EAGER: Understanding and Alleviating Potential Biases in Large Scale Employee Selection Systems: The Case of Automated Video Interviews
AI-DCL:协作研究:EAGER:理解和减轻大规模员工选拔系统中的潜在偏见:自动视频面试的案例
  • 批准号:
    1921087
  • 财政年份:
    2019
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Standard Grant
Modeling Brain and Behavior to Uncover the Eye-Brain-Mind Link during Complex Learning
模拟大脑和行为以揭示复杂学习过程中的眼-脑-心联系
  • 批准号:
    1920510
  • 财政年份:
    2019
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Continuing Grant
EXP: Collaborative Research: Cyber-enabled Teacher Discourse Analytics to Empower Teacher Learning
EXP:协作研究:基于网络的教师话语分析,增强教师学习能力
  • 批准号:
    1735793
  • 财政年份:
    2017
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Interpersonal Coordination and Coregulation during Collaborative Problem Solving
协作研究:协作解决问题过程中的人际协调和共同调节
  • 批准号:
    1660877
  • 财政年份:
    2017
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: Interpersonal Coordination and Coregulation during Collaborative Problem Solving
协作研究:协作解决问题过程中的人际协调和共同调节
  • 批准号:
    1745442
  • 财政年份:
    2017
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Continuing Grant
EXP: Attention-Aware Cyberlearning to Detect and Combat Inattentiveness During Learning
EXP:注意力感知网络学习,用于检测和克服学习过程中的注意力不集中
  • 批准号:
    1748739
  • 财政年份:
    2017
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Standard Grant
WORKSHOP: Doctoral Consortium at the 2016 ACM User Modeling, Adaptation and Personalization Conference (UMAP 2016)
研讨会:2016 年 ACM 用户建模、适应和个性化会议上的博士联盟 (UMAP 2016)
  • 批准号:
    1642486
  • 财政年份:
    2016
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Standard Grant

相似海外基金

Longitudinal Modeling of Pro-Inflammatory Cytokines, Hazardous Alcohol Use, and Cerebral Metabolites as Predictors of Neurocognitive Change in People with HIV
促炎细胞因子、有害酒精使用和脑代谢物的纵向建模作为 HIV 感染者神经认知变化的预测因子
  • 批准号:
    10838849
  • 财政年份:
    2024
  • 资助金额:
    $ 19.77万
  • 项目类别:
CAREER: Physiological Modeling of Longitudinal Human Trust in Autonomy for Operational Environments
职业:作战环境自主纵向人类信任的生理建模
  • 批准号:
    2238977
  • 财政年份:
    2023
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Continuing Grant
Bayesian modeling of multivariate mixed longitudinal responses with scale mixtures of multivariate normal distributions
具有多元正态分布尺度混合的多元混合纵向响应的贝叶斯建模
  • 批准号:
    10730714
  • 财政年份:
    2023
  • 资助金额:
    $ 19.77万
  • 项目类别:
Modeling Longitudinal Reading Comprehension in Adolescence: Protective and Risk Factors
青春期纵向阅读理解建模:保护因素和风险因素
  • 批准号:
    10586662
  • 财政年份:
    2023
  • 资助金额:
    $ 19.77万
  • 项目类别:
Modeling Resilience as a Multidimensional Protective Factor for Transgender Health Disparities: Measure Development and Longitudinal Evaluation of Resilience
将复原力建模为跨性别健康差异的多维保护因素:复原力的衡量标准制定和纵向评估
  • 批准号:
    10710191
  • 财政年份:
    2022
  • 资助金额:
    $ 19.77万
  • 项目类别:
Statistical methods for longitudinal integrated mechanistic modeling of multiview data
多视图数据纵向综合机制建模的统计方法
  • 批准号:
    10445698
  • 财政年份:
    2022
  • 资助金额:
    $ 19.77万
  • 项目类别:
Statistical methods for longitudinal integrated mechanistic modeling of multiview data
多视图数据纵向综合机制建模的统计方法
  • 批准号:
    10685565
  • 财政年份:
    2022
  • 资助金额:
    $ 19.77万
  • 项目类别:
Efficient estimation in a novel hybrid model combining deep learning and joint modeling of longitudinal and time-to-event analysis for multimodal health data
结合深度学习和多模态健康数据纵向和事件时间分析联合建模的新型混合模型的有效估计
  • 批准号:
    559863-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Modeling Longitudinal Data with Complex Structures
对具有复杂结构的纵向数据进行建模
  • 批准号:
    RGPIN-2022-03333
  • 财政年份:
    2022
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling Longitudinal Data with Complex Structures
对具有复杂结构的纵向数据进行建模
  • 批准号:
    DGECR-2022-00442
  • 财政年份:
    2022
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了