Collaborative Research: SaTC: CORE: Small: TAURUS: Towards a Unified Robust and Secure Data Driven Approach for Attack Detection in Smart Living
协作研究:SaTC:核心:小型:TAURUS:迈向智能生活中攻击检测的统一稳健且安全的数据驱动方法
基本信息
- 批准号:2030611
- 负责人:
- 金额:$ 24.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The “smart living” vision aims to improve human quality of life. Cornerstone cyber-physical systems (CPS) like smart homes, smart grid, smart transportation, or smart healthcare generate voluminous amount of time series data through sensor-actuator devices, the so-called Internet of Things (IoT). Such data may be a target of low-profile stealthy attacks hiding behind high randomness of benign smart living IoT data trends, thereby thwarting the accuracy of analytics dependent operations of various applications. The intertwined dependence on data analytics, potential civilian impact of wrong decisions and competitive economic motivations (e.g., by nation adversaries) make the underlying IoT and CPS domains extremely vulnerable to data integrity and availability attacks as addressed in the innovative TAURUS project. This collaborative project will create a tremendous impact by developing a new science of security for emerging IoT-based applications in smart living. It addresses stealthy attacks from both cyber and physical exploits hiding behind high randomness due to human behavioral differences and codifies a unified model at community scale under various attack types and strengths. Thus, the TAURUS project will drastically reduce the number of concurrently running security solutions and corresponding cross coordination to secure IoT applications. Additionally, the project will recruit and mentor undergraduate and graduate students, including women and underrepresented minority students, as well as train K-12 students through various schemes at partner institutions.The novelty of TAURUS project lies in the unified, lightweight, data-driven approaches towards security analytics across IoT domains in smart living. The invariant-based unified anomaly or intrusion detection theory is unique as it captures both linear and non-linear relationships in data from multiple IoT devices. It also ensures sharp deviations under various attacks yet remaining undisturbed under no attacks, while hiding differences in data skewness, symmetry, dynamics, and configuration across different IoT domains. The proposed response mechanism will gather evidence on the presence, type, severity, and strategies of threats. Finally, based on biological information theoretic concepts extracted from the evidence, the TAURUS project will develop a novel unified trust framework to identify compromised IoT devices with high accuracy under stealthy attacks. Validation of the developed solutions will use real datasets from smart meters and phasor measurement units in smart grid, and vehicle-to-vehicle and vehicle-to-infrastructure data in smart transportation. The proposed security framework is potentially applicable to other smart living IoT context such as smart homes and water distribution networks. A dedicated website will maintain codes, simulation and real-world datasets for two years beyond the project period. Instructions on data cleaning, preparation, and transformations will be available in a GitHub repository. Research findings and results will be disseminated via TAURUS website and publications in peer-reviewed high quality conferences and journals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
“智慧生活”的愿景旨在提高人类的生活质量。智能家居、智能电网、智能交通或智能医疗等基础网络物理系统(CPS)通过传感器执行器设备(即所谓的物联网(IoT))生成大量时间序列数据。这些数据可能是隐藏在良性智能生活物联网数据趋势的高度随机性背后的低调隐形攻击的目标,从而阻碍了各种应用程序依赖分析操作的准确性。对数据分析的相互交织的依赖,错误决策的潜在民用影响以及竞争经济动机(例如,国家对手)使得底层物联网和CPS领域极易受到数据完整性和可用性攻击,这在创新的TAURUS项目中得到了解决。该合作项目将为智能生活中新兴的基于物联网的应用开发一门新的安全科学,从而产生巨大的影响。它解决了由于人类行为差异而隐藏在高度随机性背后的网络和物理漏洞的隐形攻击,并在各种攻击类型和强度下编纂了社区规模的统一模型。因此,TAURUS项目将大大减少同时运行的安全解决方案的数量和相应的交叉协调,以确保物联网应用的安全。此外,该项目将招收和指导本科生和研究生,包括女性和代表性不足的少数民族学生,并通过合作机构的各种计划培训K-12学生。TAURUS项目的新颖之处在于,在智能生活的物联网领域中,采用统一的、轻量级的、数据驱动的安全分析方法。基于不变量的统一异常或入侵检测理论是独一无二的,因为它捕获了来自多个物联网设备的数据中的线性和非线性关系。它还确保了在各种攻击下的急剧偏差,同时在没有攻击的情况下保持不受干扰,同时隐藏了不同物联网域的数据偏度、对称性、动态和配置的差异。提议的反应机制将收集有关威胁的存在、类型、严重性和策略的证据。最后,基于从证据中提取的生物信息理论概念,TAURUS项目将开发一种新的统一信任框架,以在隐形攻击下高精度地识别受损的物联网设备。开发的解决方案的验证将使用来自智能电网中的智能电表和相量测量单元的真实数据集,以及智能交通中车辆对车辆和车辆对基础设施的数据。拟议的安全框架可能适用于其他智能生活物联网环境,如智能家居和配水网络。一个专门的网站将维护代码,模拟和现实世界的数据集超过两年的项目期间。有关数据清理、准备和转换的说明可以在GitHub存储库中获得。研究成果和结果将通过TAURUS网站和同行评议的高质量会议和期刊进行传播。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resilience Against Bad Mouthing Attacks in Mobile Crowdsensing Systems via Cyber Deception
移动群体感知系统中通过网络欺骗抵御恶意攻击的能力
- DOI:10.1109/wowmom51794.2021.00030
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Roy, Prithwiraj;Bhattacharjee, Shameek;Alsheakh, Hussein;Das, Sajal K.
- 通讯作者:Das, Sajal K.
Real Time Stream Mining based Attack Detection in Distribution Level PMUs for Smart Grids
智能电网配电级 PMU 中基于实时流挖掘的攻击检测
- DOI:10.1109/globecom42002.2020.9322072
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Roy, Prithwiraj;Bhattacharjee, Shameek;Das, Sajal.
- 通讯作者:Das, Sajal.
Attack Context Embedded Data Driven Trust Diagnostics in Smart Metering Infrastructure
智能计量基础设施中的攻击上下文嵌入式数据驱动的信任诊断
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:2.3
- 作者:S. Bhattacharjee, P. Madhavarapu
- 通讯作者:S. Bhattacharjee, P. Madhavarapu
Unifying Threats against Information Integrity in Participatory Crowd Sensing
统一参与式人群感知中信息完整性的威胁
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:1.6
- 作者:Bhattacharjee, Shameek;Das, Sajal K
- 通讯作者:Das, Sajal K
Building a Unified Data Falsification Threat Landscape for Internet of Things/Cyberphysical Systems Applications
为物联网/网络物理系统应用构建统一的数据伪造威胁格局
- DOI:10.1109/mc.2022.3198599
- 发表时间:2023
- 期刊:
- 影响因子:2.2
- 作者:Bhattacharjee, Shameek;Das, Sajal K.
- 通讯作者:Das, Sajal K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shameek Bhattacharjee其他文献
Development and evaluation of a modular experiential learning curriculum for promoting AI readiness
开发和评估模块化体验式学习课程以促进人工智能准备
- DOI:
10.1007/s10639-023-11928-w - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Irene Kahvazadeh;Edwin Jose;A. Fong;Ajay K. Gupta;Steve M. Carr;Shameek Bhattacharjee;Michael A. Harnar - 通讯作者:
Michael A. Harnar
Preserving Data Integrity in IoT Networks Under Opportunistic Data Manipulation
在机会性数据操纵下保持物联网网络中的数据完整性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shameek Bhattacharjee;Mehrdad Salimitari;M. Chatterjee;K. Kwiat;Charles A. Kamhoua - 通讯作者:
Charles A. Kamhoua
User-centric Distributed Route Planning in Smart Cities based on Multi-objective Optimization
基于多目标优化的智慧城市中以用户为中心的分布式路径规划
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Francis Tiausas;Jose Talusan;Yu Ishimaki;Hayato Yamana;Hirozumi Yamaguchi;Shameek Bhattacharjee;Abhishek Dubey;Keiichi Yasumoto;Sajal K. Das - 通讯作者:
Sajal K. Das
Towards Privacy-preserving Anomaly-based Attack Detection against Data Falsification in Smart Grid
针对智能电网中数据篡改的隐私保护异常攻击检测
- DOI:
10.1109/smartgridcomm47815.2020.9303009 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yu Ishimaki;Shameek Bhattacharjee;H. Yamana;Sajal K. Das - 通讯作者:
Sajal K. Das
A Balanced Pedagogical Approach toward AI Readiness Education for STEM Learners: Instilling a balanced view of AI capabilities through active learning in both traditional classroom and self-directed online environments
针对 STEM 学习者的 AI 准备教育的平衡教学方法:通过在传统课堂和自主在线环境中主动学习,灌输对 AI 功能的平衡看法
- DOI:
10.1145/3578837.3578875 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
A. Fong;Ajay K. Gupta;Steve M. Carr;Shameek Bhattacharjee;Michael A. Harnar - 通讯作者:
Michael A. Harnar
Shameek Bhattacharjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 24.28万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 24.28万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 24.28万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 24.28万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 24.28万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 24.28万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 24.28万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
- 批准号:
2230609 - 财政年份:2023
- 资助金额:
$ 24.28万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
- 批准号:
2312057 - 财政年份:2023
- 资助金额:
$ 24.28万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
- 批准号:
2237329 - 财政年份:2023
- 资助金额:
$ 24.28万 - 项目类别:
Standard Grant