EAGER: Rapid and Sensitive Drug Testing for COVID-19

EAGER:快速、灵敏的 COVID-19 药物检测

基本信息

  • 批准号:
    2030750
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

With vaccines against the COVID-19 pandemic still months-to-years away, current treatments for infected patients focus on anti-viral drugs. However, like many viruses that cause serious morbidity and mortality, coronaviruses can mutate and develop drug resistance. Effective treatment may require the availability of multiple effective drugs. Thousands of drug candidates are available, but a current bottleneck is drug testing, which entails virus growth in cell cultures, a labor intensive, low sensitivity, and time-consuming process that can take up to a week to perform. ThIs EAGER project exploits microscopic fluid flows in cell and virus cultures to enhance sensitivity and speed, potentially reducing test times to one day. The project aims to identify best conditions for testing of drugs against the COVID-19 virus, which will expand opportunities to effectively treat infected patients.The gold standard for testing anti-viral drugs is the plaque assay, which gives direct measures of drug effect on the production and spread of infectious virus particles in the cell culture. However, the plaque assay is labor-intensive, limited in sensitivity for drug testing, and it can take a week to perform. As an alternative, a team with expertise in virology and fluid dynamics will advance a faster, more sensitive assay. The approach exploits flow-enhanced infection spread and automated quantitative imaging, which they will optimize for coronavirus drug testing. The technology exploits microscale flows that sweep across infected cells, enhancing the spread of infection; in cell-culture wells, radial flows spontaneously arise from enhanced evaporative cooling at the fluid surface near the center of the each well, driving natural convection. The project may enable a 10-to100-fold higher sensitivity in one-tenth the time for testing drug candidates against COVID-19. Such accelerated testing could help efficiently identify drugs that significantly reduce morbidity and mortality from the ongoing pandemic and its possible re-emergence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于针对COVID-19大流行的疫苗仍需数月至数年时间,目前对感染患者的治疗主要集中在抗病毒药物上。然而,像许多导致严重发病率和死亡率的病毒一样,冠状病毒可以发生突变并产生耐药性。有效的治疗可能需要多种有效药物的可用性。成千上万的候选药物是可用的,但目前的瓶颈是药物测试,这需要细胞培养中的病毒生长,这是一个劳动密集型,低灵敏度和耗时的过程,可能需要长达一周的时间来执行。这个EAGER项目利用细胞和病毒培养物中的微观流体流动来提高灵敏度和速度,可能将测试时间缩短到一天。该项目旨在确定测试抗COVID-19病毒药物的最佳条件,这将扩大有效治疗感染患者的机会。测试抗病毒药物的金标准是空斑试验,它可以直接测量药物对细胞培养物中传染性病毒颗粒的产生和传播的影响。然而,空斑检测是劳动密集型的,对药物检测的灵敏度有限,并且可能需要一周的时间才能完成。作为替代方案,一个具有病毒学和流体动力学专业知识的团队将推进更快、更灵敏的检测。该方法利用了流动增强的感染传播和自动定量成像,他们将优化冠状病毒药物测试。该技术利用微尺度流动扫过受感染的细胞,增强感染的传播;在细胞培养威尔斯孔中,径向流动自发地产生于每个孔中心附近的流体表面处的增强的蒸发冷却,从而驱动自然对流。该项目可能在十分之一的时间内实现10至100倍的灵敏度,用于测试针对COVID-19的候选药物。这种加速测试可以帮助有效地识别可显着降低持续大流行及其可能再次出现的发病率和死亡率的药物。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的知识进行评估而被认为值得支持影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Patterns of virus growth across the diversity of life
  • DOI:
    10.1093/intbio/zyab001
  • 发表时间:
    2021-02-22
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Jin,Tianyi;Yin,John
  • 通讯作者:
    Yin,John
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Yin其他文献

Finite element model of cardiac electrical conduction
心脏电传导的有限元模型
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Yin
  • 通讯作者:
    John Yin
Energy-efficient growth of phage Q Beta in Escherichia coli.
噬菌体 Q Beta 在大肠杆菌中的高效生长。
Bacteriophage Ecology: Impact of spatial structure on phage population growth
噬菌体生态学:空间结构对噬菌体种群增长的影响
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Yin
  • 通讯作者:
    John Yin
Density of $p$-adic polynomials generating extensions with fixed splitting type
生成具有固定分裂类型的扩展的 $p$-adic 多项式的密度
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Yin
  • 通讯作者:
    John Yin
Model-Based Design of Growth-Attenuated
基于模型的生长衰减设计
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Yin
  • 通讯作者:
    John Yin

John Yin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Yin', 18)}}的其他基金

Collaborative Research: MODULUS: Stochastic reaction-diffusion equations on metric graphs and spatially-resolved dynamics of virus infection spread
合作研究:MODULUS:度量图上的随机反应扩散方程和病毒感染传播的空间分辨动力学
  • 批准号:
    2151959
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: National Symposium on PRedicting Emergence of Virulent Entities by Novel Technologies (PREVENT)
合作研究:利用新技术预测有毒实体出现的全国研讨会(预防)
  • 批准号:
    2115164
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: Ecological Dynamics of Human Coronavirus
RAPID:人类冠状病毒的生态动力学
  • 批准号:
    2029281
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ITR: Self-Replicative Information Processing
ITR:自我复制信息处理
  • 批准号:
    0313214
  • 财政年份:
    2003
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
QSB: Integrated Dynamics of Cell-cell Communication
QSB:细胞间通讯的综合动力学
  • 批准号:
    0331337
  • 财政年份:
    2003
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Biology & Information Technology Systems: Genomic Information Processing by a Virus-Host System
生物学
  • 批准号:
    0130874
  • 财政年份:
    2002
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Characterization of Viruses on Patterned Cells
图案化细胞上病毒的表征
  • 批准号:
    0087939
  • 财政年份:
    2001
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
QSB: Stable Heterologous Multi-Gene Expression: Insights from Hepatitis B Virus
QSB:稳定的异源多基因表达:乙型肝炎病毒的见解
  • 批准号:
    0120361
  • 财政年份:
    2001
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NSF Young Investigator
NSF 青年研究员
  • 批准号:
    9896230
  • 财政年份:
    1998
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Presidential Faculty Fellows/Presidential Early Career Awards for Scientists and Engineers (PFF/PECASE)
总统教职研究员/总统科学家和工程师早期职业奖(PFF/PECASE)
  • 批准号:
    9629060
  • 财政年份:
    1997
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
  • 批准号:
    2338857
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Physics-informed Machine Learning approach for a selective, sensitive, and rapid sensor for detecting unsafe levels of carcinogenic/toxic VOCs
基于物理的机器学习方法,用于选择性、灵敏且快速的传感器,用于检测致癌/有毒 VOC 的不安全水平
  • 批准号:
    10600819
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Dye-loaded Nanoparticle Platform for Rapid and Sensitive Vivarium Pathogen Detection
用于快速、灵敏检测动物病原体的负载染料的纳米颗粒平台
  • 批准号:
    10602993
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
SUPPORTING WHO ONCHOCERCIASIS ELIMINATION PROGRAMS: PROGRESSING A HIGHLY SENSITIVE AND ULTRA-SPECIFIC RAPID DIAGNOSTIC TEST TO COMMERCIALIZATION READINESS
支持世界卫生组织根除盘尾丝虫病计划:推进高度敏感和超特异性的快速诊断测试以做好商业化准备
  • 批准号:
    10697164
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
RAPID: Acquisition and curation of time-sensitive field data from severely flooded neighborhoods in New York City from tropical storm Ophelia for environmental sustainability study
RAPID:从热带风暴奥菲莉亚纽约市严重洪水淹没的社区获取和管理时间敏感的现场数据,用于环境可持续性研究
  • 批准号:
    2402240
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Trial of differential diagnosis by a highly sensitive rapid test method to detect exosomes specific for urinary tract infections.
通过高度灵敏的快速检测方法进行鉴别诊断试验,以检测尿路感染特异性外泌体。
  • 批准号:
    22K09487
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
First-in-class, highly sensitive and specific rapid diagnostic test to detect Paragonimus infections
用于检测并殖吸虫感染的一流、高灵敏度和特异性的快速诊断测试
  • 批准号:
    10545410
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
SBIR Phase II: A Rapid, Sensitive Pathogen Typing and Antibiotic Sensitivity Test for Bloodstream Infections (COVID-19)
SBIR II 期:针对血流感染 (COVID-19) 的快速、敏感病原体分型和抗生素敏感性测试
  • 批准号:
    2212920
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Cooperative Agreement
Highly-sensitive, rapid and low cost plasmonic assay platform for Lyme disease diagnosis
用于莱姆病诊断的高灵敏度、快速且低成本的等离子体检测平台
  • 批准号:
    10546574
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Development of rapid and sensitive bioassay methods to contribute to actinide internal exposure medical response
开发快速、灵敏的生物测定方法,有助于锕系元素内照射医疗反应
  • 批准号:
    22K12384
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了