IIBR: Informatics: RAPID: Genome-wide Structure and Function Modeling of the SARS-CoV-2 Virus
IIBR:信息学:RAPID:SARS-CoV-2 病毒的全基因组结构和功能建模
基本信息
- 批准号:2030790
- 负责人:
- 金额:$ 19.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The most recent outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic. It has spread over more than 200 countries and caused numerous deaths worldwide. The central activities of SARS-CoV-2, including human cell invasion and viral duplication and infection, are conducted through the proteins coded by the viral genome as well as the protein-protein interactions between the virus and its human hosts. Determination of the structures, functions and interactions of protein molecules associated with coronaviruses can thus provide critically important knowledge to help elucidate and end the pandemic. This project will extend state-of-the-art structural bioinformatics methods to generate genome-wide protein structure and function models for SARS-CoV-2 and other human coronaviruses, which will help in understanding the general mechanisms and principles governing the virulence, diversity and evolution of these coronaviruses and facilitate the development of new treatments to cure infected individuals and terminate the COVID-19 pandemic. Multiple graduate and undergraduate students, including women and minorities, will be trained through participation in different Objectives of the project. The project results will be integrated with the bioinformatics core courses in the Bioinformatics and Biochemistry PhD Programs and the Museum of Natural History at the University of Michigan, with the purpose of enhancing the outreach and broad impacts of this research on both student and public education.Accurately modeling protein structure and function has been a long-term challenge in structural bioinformatics and computational biology. A classical approach to this problem is comparative modeling, i.e., deducing information of unknown target proteins from known homologous proteins that are evolutionarily related to the targets. This approach is built on the assumption that similar sequences have similar structures and functions. Although they work well in many applications, the comparative approaches cannot be applied to effectively model proteins associated with SARS-CoV-2 and other human coronaviruses, because viral genomes are highly mutable, and many of the genes and gene products belonging to these viruses do not have close homologous templates with other species. To address these issues, this project plans to extend multiple algorithms developed in the PI’s lab, which have been designed primarily for non-homology-based protein structure and function prediction. In particular, the methods will utilize cutting-edge deep convolutional neural-network (DCNN) models to generate amino acid-level contact and distance maps in order to improve protein structure and interaction network modeling accuracy. Since the DCNN models are trained only on sequence databases, the performance of the approaches does not rely on the availability of structural and functional templates and can therefore be effectively used to model the coronavirus proteins that lack homologous templates; successfully developing these methods will also benefit the field of structural bioinformatics in general due to the importance of non-homologous protein structure and function prediction. In summary, the success of this project will result in the development of an urgently needed knowledge base to improve the understanding of fundamental principles associated with human coronaviruses and facilitate the development of new treatments for the COVID-19 pandemic. The data and methods produced by the project will be accessible to the community at https://zhanglab.ccmb.med.umich.edu/COVID-19/. This RAPID award is made by the Division of Biological Infrastructure, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近一次爆发的2019年冠状病毒病(新冠肺炎),由严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)引起,已成为一场全球大流行。它已经蔓延到200多个国家,并在世界范围内造成了无数人死亡。SARS-CoV-2的中心活动,包括人类细胞入侵、病毒复制和感染,是通过病毒基因组编码的蛋白质以及病毒与其宿主之间的蛋白质-蛋白质相互作用来进行的。因此,确定与冠状病毒相关的蛋白质分子的结构、功能和相互作用可以提供至关重要的知识,以帮助阐明和结束大流行。这个项目将扩展最先进的结构生物信息学方法来生成SARS-CoV-2和其他人类冠状病毒的全基因组蛋白质结构和功能模型,这将有助于了解这些冠状病毒毒力、多样性和进化的一般机制和原理,并促进开发新的治疗方法来治愈受感染的个人和终止新冠肺炎大流行。多名研究生和本科生,包括妇女和少数群体,将通过参与该项目的不同目标接受培训。该项目的成果将与生物信息学和生物化学博士项目以及密歇根大学自然历史博物馆的生物信息学核心课程相结合,目的是加强这项研究对学生和公共教育的扩展和广泛影响。准确地模拟蛋白质的结构和功能一直是结构生物信息学和计算生物学的长期挑战。解决这一问题的一个经典方法是比较建模,即从已知的与目标进化相关的同源蛋白中推导出未知目标蛋白的信息。这种方法是建立在相似序列具有相似结构和功能的假设之上的。虽然比较方法在许多应用中效果良好,但不能用于有效地模拟与SARS-CoV-2和其他人类冠状病毒相关的蛋白质,因为病毒基因组高度可变,并且属于这些病毒的许多基因和基因产物与其他物种没有紧密的同源模板。为了解决这些问题,该项目计划扩展PI实验室开发的多种算法,这些算法主要是为基于非同源性的蛋白质结构和功能预测而设计的。特别是,这些方法将利用尖端的深度卷积神经网络(DCNN)模型来生成氨基酸水平的接触图和距离图,以提高蛋白质结构和相互作用网络的建模精度。由于DCNN模型只在序列数据库上训练,因此方法的性能不依赖于结构和功能模板的可用性,因此可以有效地用于模拟缺乏同源模板的冠状病毒蛋白质;由于非同源蛋白质结构和功能预测的重要性,成功开发这些方法也将总体上有益于结构生物信息学领域。总之,该项目的成功将导致建立一个亟需的知识库,以提高对与人类冠状病毒有关的基本原理的理解,并促进开发针对新冠肺炎大流行病的新疗法。该项目产生的数据和方法将在https://zhanglab.ccmb.med.umich.edu/COVID-19/.上向社区开放这一快速奖项由生物基础设施部利用冠状病毒援助、救济和经济安全(CARE)法案的资金做出。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Human DNA Mismatch Repair Protein MSH3 Contains Nuclear Localization and Export Signals That Enable Nuclear-Cytosolic Shuttling in Response to Inflammation
- DOI:10.1128/mcb.00029-20
- 发表时间:2020-07-01
- 期刊:
- 影响因子:5.3
- 作者:Tseng-Rogenski, Stephanie S.;Munakata, Koji;Carethers, John M.
- 通讯作者:Carethers, John M.
Identifying the Zoonotic Origin of SARS-CoV-2 by Modeling the Binding Affinity between the Spike Receptor-Binding Domain and Host ACE2
- DOI:10.1021/acs.jproteome.0c00717
- 发表时间:2020-12-04
- 期刊:
- 影响因子:4.4
- 作者:Huang, Xiaoqiang;Zhang, Chengxin;Zhang, Yang
- 通讯作者:Zhang, Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Zhang其他文献
ニュース記事の読み方の判断支援に関する研究
决定如何阅读新闻文章的支持研究
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
KIRIHATA Makoto;MA Qiang;Chengyang Ye;伊藤優希;Chengyang Ye;Chengyang Ye;福知侑也;平野瑠登;Chengyang Ye;井口勝太;Yang Zhang;前川丈幸 - 通讯作者:
前川丈幸
ニュース記事の考慮の有無による 株価指数の予測結果の差に基づく経済的影響力の推定
基于考虑和不考虑新闻文章的股指预测结果差异的经济影响力估计
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
KIRIHATA Makoto;MA Qiang;Chengyang Ye;伊藤優希;Chengyang Ye;Chengyang Ye;福知侑也;平野瑠登;Chengyang Ye;井口勝太;Yang Zhang;前川丈幸;福知侑也;米田宏生 - 通讯作者:
米田宏生
有価証券報告書の分析に基づく重要な新着ニュースの発見.
根据证券报告分析发现重要的新消息。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
KIRIHATA Makoto;MA Qiang;Chengyang Ye;伊藤優希;Chengyang Ye;Chengyang Ye;福知侑也;平野瑠登;Chengyang Ye;井口勝太;Yang Zhang;前川丈幸;福知侑也;米田宏生;Yang Zhang;Satoshi Yoshida;Yang Zhang;吉田聖;桐畑 誠;米田宏生 - 通讯作者:
米田宏生
Preliminary breakdown, following lightning discharge processes and lower positive charge region
闪电放电过程和较低正电荷区域之后的初步击穿
- DOI:
10.1016/j.atmosres.2015.03.017 - 发表时间:
2015-07 - 期刊:
- 影响因子:5.5
- 作者:
Yang Zhang;Yijun Zhang;Dong Zheng;Weitao Lu - 通讯作者:
Weitao Lu
Three-dimensional particle tracking velocimetry algorithm based on tetrahedron vote
基于四面体投票的三维粒子跟踪测速算法
- DOI:
10.1007/s00348-017-2485-9 - 发表时间:
2018-01 - 期刊:
- 影响因子:0
- 作者:
Yutong Cui;Yang Zhang;Pan Jia;Yuan Wang;Jingcong Huang;Junlei Cui;Lai T Wing - 通讯作者:
Lai T Wing
Yang Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Zhang', 18)}}的其他基金
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
- 批准号:
2323118 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Collaborative Research: Spectral Discrimination of Single Molecules with Photoactivatable Fluorescence
合作研究:利用光激活荧光对单分子进行光谱辨别
- 批准号:
2246548 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Toolkits for Creating Interaction-powered Energy-aware Computing Systems
合作研究:HCC:小型:用于创建交互驱动的能源感知计算系统的工具包
- 批准号:
2228982 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Programmable Visual Capabilities of Environments through 3D printed Light-transfer
合作研究:HCC:小型:通过 3D 打印光传输实现环境的可编程视觉功能
- 批准号:
2213843 - 财政年份:2022
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Framework: Sofware: Collaborative Research: CyberWater -An open and sustainable framework for diverse data and model integration with provenance and access to HPC
框架:软件:协作研究:CyberWater - 一个开放且可持续的框架,用于将各种数据和模型集成到 HPC 的来源和访问权限
- 批准号:
2018500 - 财政年份:2020
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Framework: Sofware: Collaborative Research: CyberWater -An open and sustainable framework for diverse data and model integration with provenance and access to HPC
框架:软件:协作研究:CyberWater - 一个开放且可持续的框架,用于将各种数据和模型集成到 HPC 的来源和访问权限
- 批准号:
1835656 - 财政年份:2019
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
I-Corps: Soft Robotic Arms as Human-Compatible Machines
I-Corps:作为人类兼容机器的软机械臂
- 批准号:
1946216 - 财政年份:2019
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
- 批准号:
1564756 - 财政年份:2016
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Climate Mitigation and Earth System Management from Local to Global Scale: Modeling Technology-Driven Futures
从地方到全球规模的气候减缓和地球系统管理:模拟技术驱动的未来
- 批准号:
1049200 - 财政年份:2011
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Collaborative Research: Developing an Intergovernmental Management Framework for Sustainable Recovery Following Catastrophic Disasters
合作研究:制定灾难性灾害后可持续恢复的政府间管理框架
- 批准号:
1029298 - 财政年份:2010
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Program for Access to Training in Health Informatics (PATHI)
REU 网站:健康信息学培训计划 (PATHI)
- 批准号:
2348793 - 财政年份:2024
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Travel: IEEE International Conference on Healthcare Informatics (IEEE ICHI 2024) Doctoral Consortium Travel Scholarship
旅行:IEEE 国际医疗信息学会议 (IEEE ICHI 2024) 博士联盟旅行奖学金
- 批准号:
2414093 - 财政年份:2024
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Reliable Tensor-Network Fusion Approach to Medical Informatics: Novel Techniques and Benchmarks
可靠的张量网络融合医学信息学方法:新技术和基准
- 批准号:
24K03005 - 财政年份:2024
- 资助金额:
$ 19.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Informatics Materials with an Awareness of the High School-University connection and a Learning Support Environment for Data-Driven Instruction
开发具有高中与大学联系意识的信息学材料和数据驱动教学的学习支持环境
- 批准号:
23H01019 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Travel: NSF Student Travel Grant for 2023 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)
旅行:2023 年 IEEE-EMBS 国际生物医学和健康信息学会议 (BHI) 的 NSF 学生旅行补助金
- 批准号:
2331680 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
CAREER: Transforming Personal Informatics Systems to Support Routine Transitions in Healthy Eating
职业:转变个人信息系统以支持健康饮食的常规转变
- 批准号:
2414270 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Continuing Grant
Pioneering Research of industrial materials informatics for innovative lithium battery anodes
创新锂电池阳极工业材料信息学的开创性研究
- 批准号:
23K18465 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
- 批准号:
23K13008 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
CAREER: Transforming Personal Informatics Systems to Support Routine Transitions in Healthy Eating
职业:转变个人信息系统以支持健康饮食的常规转变
- 批准号:
2239727 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Continuing Grant