Using a Data-driven Approach to Improve Persistence of Academically Talented STEM Students with High Unmet Financial Need

使用数据驱动的方法来提高财务需求未得到满足的学术才华 STEM 学生的坚持性

基本信息

  • 批准号:
    2030873
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at The College of St. Scholastica. Over its five-year duration, this project will fund scholarships to 30 unique full-time students pursuing bachelor’s degrees in biology, biochemistry, chemistry, computer science, or mathematics. Two cohorts of academically talented first-year students with low income and high levels of unmet financial need will receive one-year scholarships renewable for up to four years. The goal is to reduce the Scholars’ financial burden and increase their probability of completing a STEM degree. Project activities include a common academic experience for first-year students, a sophomore success seminar, tutoring, and multiple community-building opportunities, such as Family Welcome Weekend, STEM learning communities, and faculty and peer mentoring. This project will study the role of financial aid as well as curricular and co-curricular programming in the success of STEM students, particularly for those with high unmet financial need. Data generated through the comprehensive evaluation plan will inform the College’s financial aid policies and curricular and co-curricular strategies. These results may also guide STEM faculty and administrators at similar institutions across the country who seek to improve STEM undergraduate student persistence. The project will provide STEM programming opportunities to about 200 STEM students (including non-Scholars), about 15% of whom are students of color and 57% are females. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. Ten years of institutional data demonstrate that persistence and graduation rates of STEM students declines with increasing levels of unmet financial need, with a sharp decrease as unmet need exceeds $10,000 per year. This project will use a data-driven process to select scholarship recipients who would otherwise be most likely to leave STEM and/or the College due to significant financial need. This project is designed to improve all STEM students’ persistence at key academic transition points by delivering evidence-based curricular and co-curricular support. To measure the success of the project, students’ progress through the degree programs and participation in curricular and co-curricular activities will be monitored, and student interviews and surveys will provide information about what elements of the project encouraged or discouraged them from persisting in STEM. Finally, this project will study the effectiveness of the proposed strategies and share results broadly with STEM researchers and college administrators. As a result, this project and its findings have the potential to advance understanding about the value of a data-driven approach to STEM student retention that could be beneficial to other small colleges with similar academic and financial profiles. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将有助于对受过良好教育的科学家,数学家,工程师和技术人员的国家需求,通过支持高成就,低收入学生的保留和毕业,证明在圣学院的经济需要。在五年的时间里,该项目将为30名攻读生物学、生物化学、化学、计算机科学或数学学士学位的全日制学生提供奖学金。两批具有低收入和高水平未满足经济需求的学术才华的一年级学生将获得为期一年的奖学金,可延长至四年。 目标是减轻学者的经济负担,增加他们完成STEM学位的可能性。项目活动包括一年级学生的共同学术体验,二年级成功研讨会,辅导和多种社区建设机会,如家庭欢迎周末,STEM学习社区以及教师和同行指导。该项目将研究经济援助以及课程和课外活动在STEM学生成功中的作用,特别是对于那些有高度未满足的经济需求的学生。通过综合评估计划产生的数据将告知学院的财政援助政策和课程和课外战略。 这些结果也可以指导全国类似机构的STEM教师和管理人员,他们寻求提高STEM本科生的持久性。该项目将为约200名STEM学生(包括非学者)提供STEM编程机会,其中约15%为有色人种学生,57%为女性。 该项目的总体目标是提高低收入,高成就的本科生与证明财政需要完成STEM学位。十年的机构数据表明,STEM学生的持续性和毕业率随着未满足的经济需求水平的增加而下降,当未满足的需求超过每年10,000美元时急剧下降。该项目将使用数据驱动的过程来选择奖学金获得者,否则他们最有可能因为重大的经济需求而离开STEM和/或学院。该项目旨在通过提供基于证据的课程和课外支持,提高所有STEM学生在关键学术过渡点的坚持性。为了衡量该项目的成功,学生通过学位课程和参与课程和课外活动的进展将受到监控,学生访谈和调查将提供有关该项目的哪些元素鼓励或劝阻他们坚持干的信息。最后,该项目将研究所提出的战略的有效性,并与STEM研究人员和大学管理人员广泛分享成果。因此,该项目及其研究结果有可能促进对数据驱动的STEM学生保留方法的价值的理解,这可能有利于其他具有类似学术和财务状况的小型学院。该项目由NSF的科学,技术,工程和数学奖学金计划资助,该计划旨在增加低收入学术人才的数量,这些学生表现出经济需求,并获得STEM领域的学位。它还旨在改善未来STEM工作者的教育,并提供有关低收入学生的学术成功、保留、转学、毕业和学术/职业途径的知识。该奖项反映了NSF的法定使命,并且通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heather Brown其他文献

The development of expertise in children’s mental health therapists and teachers: changes in perspective and approach
儿童心理健康治疗师和教师专业知识的发展:观点和方法的变化
  • DOI:
    10.1080/00131881.2014.934553
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    G. King;Jacqueline Specht;Patricia Petersen;Michelle Servais;S. Stewart;Gabrielle Young;Heather Brown
  • 通讯作者:
    Heather Brown
Prevalence of Diseases and Conditions Amenable to Stem Cell Transplant or Infusion Among Families Storing Newborn Stem Cells at a Large Private Cord Blood Bank
  • DOI:
    10.1016/j.bbmt.2013.12.287
  • 发表时间:
    2014-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Peter Mazonson;Chris Santas;Heather Harris;Heather Brown;Andrew Mohr;Lindsay Stanley;Kelin Colberg
  • 通讯作者:
    Kelin Colberg
The Effect of Feeding Two or Three Meals Per Day of Either Low or High Nonstructural Carbohydrate Concentrates on Postprandial Glucose and Insulin Concentrations in Horses
  • DOI:
    10.1016/j.jevs.2014.08.004
  • 发表时间:
    2014-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shannon Pratt-Phillips;Jenna Kutzner-Mulligan;Rebecca Marvin;Heather Brown;Chris Sykes;Jennifer Federico
  • 通讯作者:
    Jennifer Federico
A randomized trial of pharmacological ascorbate, gemcitabine, and emnab/em-paclitaxel for metastatic pancreatic cancer
用于转移性胰腺癌的药理学抗坏血酸,吉西他滨和EMNAB/EM-PACLITAXEL的随机试验
  • DOI:
    10.1016/j.redox.2024.103375
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Kellie L. Bodeker;Brian J. Smith;Daniel J. Berg;Chandrikha Chandrasekharan;Saima Sharif;Naomi Fei;Sandy Vollstedt;Heather Brown;Meghan Chandler;Amanda Lorack;Stacy McMichael;Jared Wulfekuhle;Brett A. Wagner;Garry R. Buettner;Bryan G. Allen;Joseph M. Caster;Barbara Dion;Mandana Kamgar;John M. Buatti;Joseph J. Cullen
  • 通讯作者:
    Joseph J. Cullen
Exploring the association between health, local area characteristics and climate action plans in the UK: Cross-sectional analysis using administrative data from 2018 and a citizen science ranking of climate action plans from 2021
探索英国健康、当地特征和气候行动计划之间的关联:使用 2018 年行政数据和 2021 年气候行动计划公民科学排名进行横断面分析
  • DOI:
    10.1371/journal.pclm.0000166
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heather Brown;Scott Butterfield;Jessica Davies;Steven Dodd;A. Morris
  • 通讯作者:
    A. Morris

Heather Brown的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heather Brown', 18)}}的其他基金

The Intergenerational Transfer of Eating Habits, Physical Activity Behaviour, and Body Composition: Evidence from the UK
饮食习惯、体力活动行为和身体成分的代际传递:来自英国的证据
  • 批准号:
    G0802291/1
  • 财政年份:
    2009
  • 资助金额:
    $ 100万
  • 项目类别:
    Fellowship
Integration of an Inductively Coupled Plasma Mass Spectrometer into the Undergraduate Concrete and Geology Curricula and Research Programs
将电感耦合等离子体质谱仪整合到本科混凝土和地质学课程和研究项目中
  • 批准号:
    0511205
  • 财政年份:
    2005
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
International Research Fellowship Program: Microstructural and Micromagnetic Origins of Exchange Bias in Ferromagnetic/Antiferromagnetic Thin-Films
国际研究奖学金计划:铁磁/反铁磁薄膜中交换偏差的微结构和微磁起源
  • 批准号:
    0301930
  • 财政年份:
    2003
  • 资助金额:
    $ 100万
  • 项目类别:
    Fellowship

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
  • 批准号:
    2301411
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
GLIOMATCH: The malignant Glioma immuno-oncology matchmaker: towards data-driven precision medicine using spatially resolved radio-multiomics
GLIOMATCH:恶性胶质瘤免疫肿瘤学媒人:利用空间分辨的放射多组学实现数据驱动的精准医学
  • 批准号:
    10113516
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    EU-Funded
codABLE: Data-driven optimised protein production using Pichia pastoris
codABLE:使用毕赤酵母进行数据驱动的优化蛋白质生产
  • 批准号:
    10108143
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Launchpad
Enabling net zero retrofit: using AI to generate new data driven insights and support better decision making
实现净零改造:使用人工智能生成新的数据驱动的见解并支持更好的决策
  • 批准号:
    10114530
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    SME Support
Study on Heavy Rainfall Mechanism by Mathematical and Data-Driven Approach Using Large Ensemble
利用大集合的数学和数据驱动方法研究强降雨机制
  • 批准号:
    23KF0161
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
  • 批准号:
    10727356
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
Improving data-driven design using physical model-based machine learning
使用基于物理模型的机器学习改进数据驱动设计
  • 批准号:
    23K13239
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Data-driven approach for advanced control of immune system by using low-temperature plasma
利用低温等离子体对免疫系统进行高级控制的数据驱动方法
  • 批准号:
    23H01404
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
IHBEM: Data-driven integration of behavior change interventions into epidemiological models using equation learning
IHBEM:使用方程学习将行为改变干预措施以数据驱动的方式整合到流行病学模型中
  • 批准号:
    2327836
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Study on a control system for total intravenous anesthesia using data-driven approaches
使用数据驱动方法研究全静脉麻醉控制系统
  • 批准号:
    23K03912
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了