RAPID: Sprayable Cellulosic Nanoparticle Coatings for Covid 19
RAPID:用于 Covid 19 的可喷涂纤维素纳米颗粒涂层
基本信息
- 批准号:2031111
- 负责人:
- 金额:$ 19.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
COVID-19 has caused the entire world to go into an unprecedented level of voluntary and involuntary isolation affecting mobility, health, and economic stability. One critical, under-researched aspect is preventing the spread of the virus through exposure to contaminated surfaces, which can remain contaminated with active virus for several days. This project will lead to a new plant-based nanomaterial coating to protect frequently contacted surfaces from contamination. Specifically, this project will evaluate the effectiveness of attaching different anti-viral chemicals on the plant-based nanomaterials and testing whether they are effective in treating viruses including COVID-19. At the end of this one-year project, it is expected that there will be a sprayable surface coating that destroys viruses rapidly and thereby prevents the spread of diseases. The coating will be made from Oxone® modified cellulose nanoparticles incorporating active chemistries made specifically for destroying viruses. The researchers on this team have shown that they can use click chemistry on cellulose surfaces which basically allow for any group to be attached. All of the chemistries that will be studied have been approved for decontamination by the Center for Disease Control so approval of this new technology for widespread use could be rapid. Preliminary work has shown that the coatings can be made in thin layers of around 4 microns with at least 10 different chemistries bound covalently with anti-bacterial properties to prevent bacterial growth. In addition, the coating hydrophilicity can be tuned using a hydrophobic wax and is also resilient enough to withstand at least 40 touches when applied to a metallic surface before requiring reapplication. These preliminary studies indicate that the new coating with chemistries for virus destruction could be used for COVID-19 as well as a general anti-viral and anti-bacterial coating for surfaces in the future. Specifically, this project will evaluate the effectiveness of attaching different anti-viral groups in deactivating a model virus using RT-PCR and determine the durability of varying coating hydrophobicity on its adhesion to three model surfaces (glass, metal, and plastic). The properties of the cellulose nanomaterial on virus destruction and adhesion will also be studied. At the end of this one-year project, it is expected that there will be a sprayable surface coating that destroys viruses rapidly and thereby prevents the spread of diseases such as COVID-19. As part of this project one graduate student and one post-doctoral student will be educated. This spray-technology could also be used for making membranes and new types of packaging materials that could significantly increase the use of renewable cellulose. Finally, if successful, this project could be widespread because it could be one of the only known ways to have continuous long-term treatment of a surface that destroys COVID-19 and other viruses. . One graduate student and one post-doctoral student will be educated as part of this project. But the most exciting part of this project is the fact that the involved students will have a profound and positive impact on the world. In a functioning society, people must go out in the public to high traffic areas such as grocery stores, hospitals, nursing homes, post offices, etc. This spray could be used to prevent the spread of COVID-19 from all those doorknobs and handles. This project is jointly funded by the Chemical, Bioengineering, Environmental and Transport Systems (CBET) Division and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
COVID-19使整个世界进入了前所未有的自愿和非自愿隔离状态,影响了流动性、健康和经济稳定。一个关键的、研究不足的方面是防止病毒通过接触受污染的表面传播,这些表面可能会被活性病毒污染数天。该项目将产生一种新的植物基纳米材料涂层,以保护频繁接触的表面免受污染。具体而言,该项目将评估在植物基纳米材料上附着不同抗病毒化学品的有效性,并测试它们是否能有效治疗包括COVID-19在内的病毒。在这个为期一年的项目结束时,预计将有一种可喷涂的表面涂层,可以迅速消灭病毒,从而防止疾病的传播。该涂层将由Oxone®改性纤维素纳米颗粒制成,其中包含专门用于破坏病毒的活性化学物质。该团队的研究人员已经证明,他们可以在纤维素表面上使用点击化学,基本上允许任何基团附着。所有将被研究的化学物质都已被疾病控制中心批准用于去污,因此这项新技术的广泛使用将很快得到批准。初步工作表明,涂层可以制成约4微米的薄层,其中至少有10种不同的化学物质与抗菌特性共价结合,以防止细菌生长。此外,涂层的亲水性可以使用疏水蜡来调节,并且在需要重新施加之前,当施加到金属表面上时,涂层也具有足够的弹性以承受至少40次触摸。这些初步研究表明,具有病毒破坏化学物质的新涂层可用于COVID-19以及未来用于表面的通用抗病毒和抗菌涂层。具体而言,该项目将使用RT-PCR评估连接不同抗病毒基团在灭活模型病毒中的有效性,并确定不同涂层疏水性对其粘附到三个模型表面(玻璃,金属和塑料)的耐久性。还将研究纤维素纳米材料对病毒破坏和粘附的特性。在这个为期一年的项目结束时,预计将有一种可喷涂的表面涂层,可以快速摧毁病毒,从而防止COVID-19等疾病的传播。作为该项目的一部分,一名研究生和一名博士后学生将接受教育。这种喷雾技术也可用于制造膜和新型包装材料,从而显著增加可再生纤维素的使用。最后,如果成功,该项目可能会得到广泛应用,因为它可能是已知的对表面进行持续长期处理以破坏COVID-19和其他病毒的唯一方法之一。.一名研究生和一名博士后学生将作为该项目的一部分接受教育。但这个项目最令人兴奋的部分是,参与的学生将对世界产生深远而积极的影响。在一个正常运转的社会中,人们必须在公共场合外出,前往杂货店、医院、养老院、邮局等交通繁忙的地区。这种喷雾可以用来防止COVID-19从所有这些门把手和把手传播。该项目由化学、生物工程、环境和运输系统(CBET)部门和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jamie Hestekin其他文献
The high energetic potential of hydraulic fracturing wastewaters with both salinity and temperature gradients for electricity generation using a reverse electrodialysis stack
- DOI:
10.1016/j.cej.2024.153967 - 发表时间:
2024-09-15 - 期刊:
- 影响因子:
- 作者:
Arash Emdadi;Jamie Hestekin;Lauren F. Greenlee;Bruce Logan - 通讯作者:
Bruce Logan
Jamie Hestekin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
SBIR Phase I: Development of a Novel, Sprayable, Large Volume Hydrogel Delivery System Platform
SBIR 第一阶段:开发新型、可喷雾、大容量水凝胶输送系统平台
- 批准号:
2304462 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
SBIR Phase I: Sprayable hydrogel sealant for gastrointestinal wound protection
SBIR 第一期:用于胃肠道伤口保护的可喷涂水凝胶密封剂
- 批准号:
2335845 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
Sprayable Hydrogel Barrier for the Delivery of Adhesion-Preventing Therapeutics
用于提供防粘连治疗的可喷雾水凝胶屏障
- 批准号:
10696561 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Development of a novel antimicrobial (AM) sprayable clear coating
开发新型抗菌 (AM) 喷涂透明涂层
- 批准号:
561220-2020 - 财政年份:2022
- 资助金额:
$ 19.49万 - 项目类别:
Alliance Grants
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 19.49万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 19.49万 - 项目类别:
A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
一种可喷雾的组织结合水凝胶,用于防止术后心脏粘连
- 批准号:
10546558 - 财政年份:2022
- 资助金额:
$ 19.49万 - 项目类别:
Sprayable anti-infective and anti-biofilm coatings for industrial, agricultural, and consumer applications
适用于工业、农业和消费应用的可喷涂抗感染和抗生物膜涂层
- 批准号:
570723-2021 - 财政年份:2022
- 资助金额:
$ 19.49万 - 项目类别:
Alliance Grants
A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
一种可喷雾的组织结合水凝胶,用于防止术后心脏粘连
- 批准号:
10759613 - 财政年份:2022
- 资助金额:
$ 19.49万 - 项目类别: