RAPID: Analyses of Emotions Expressed in Social Media and Forums During the COVID-19 Pandemic
RAPID:对 COVID-19 大流行期间社交媒体和论坛中表达的情绪进行分析
基本信息
- 批准号:2031246
- 负责人:
- 金额:$ 19.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigators are constructing a comprehensive database that collects, stores, and analyzes content related to fear, anxiety, sadness, and anger associated with COVID-19 from social media and web-based forums. Prior literature has demonstrated that stress can reduce decision making capacity and quality. Online risks (e.g., privacy, security vulnerabilities) may have increased as social media and web-based forums have become a predominant form of communication. This dataset will establish a location- and time-linked record of emotions that may be associated with increased vulnerability to virtual threats. The data will permit analyses of risks such as sharing of more personal information online, misinformation initiation and spread, relaxed security preferences, and insider threat. A second goal is to answer fundamental research questions about the linkages of negative emotions experienced during this pandemic with regional variation and socioeconomic status. This research is urgent and timely given that many online data sources do not archive data or make archives available for analyses. This research advances science by informing community response and policymaking during pandemics through an analysis and understanding of how emotions are linked to local and regional social and geographic indicators during the pandemic.The research team will collect COVID-19 data from 10-15 social media and web-based forums from December 31, 2019 to December 31, 2020. Data collection will begin when Chinese authorities first treated pneumonia cases that later became known as the coronavirus. The investigators will follow responses to COVID-19 for a year to assess the public's emotional responses to the pandemic. To examine health and economic disparities by region, the investigators will analyze geolocated posts and integrate the data with variables from the Census Bureau Survey. Artificial intelligence and data science techniques will be used in processing and analyzing the large amounts of heterogenous data collected in this effort. From these analyses, policies could be created to improve prevention, security, privacy and other public understanding and policies during the pandemic.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
调查人员正在构建一个全面的数据库,收集、存储和分析来自社交媒体和网络论坛的与COVID-19相关的恐惧、焦虑、悲伤和愤怒的内容。先前的文献已经证明,压力可以降低决策能力和质量。在线风险(例如,隐私、安全漏洞)可能有所增加,因为社交媒体和基于网络的论坛已成为主要的通信形式。 该数据集将建立与位置和时间相关的情绪记录,这些情绪可能与虚拟威胁的脆弱性增加有关。这些数据将允许对风险进行分析,例如在线共享更多个人信息,错误信息的发起和传播,放松的安全偏好以及内部威胁。第二个目标是回答关于这一流行病期间经历的负面情绪与区域差异和社会经济地位之间联系的基本研究问题。鉴于许多在线数据源不存档数据或提供档案供分析,这项研究是紧迫和及时的。该研究通过分析和理解流行期间情绪如何与当地和区域社会和地理指标联系起来,为流行期间的社区反应和政策制定提供信息,从而推动科学发展。研究团队将从2019年12月31日至2020年12月31日收集10-15个社交媒体和网络论坛的COVID-19数据。数据收集将从中国当局首次治疗后来被称为冠状病毒的肺炎病例时开始开始。调查人员将跟踪对COVID-19的反应一年,以评估公众对大流行的情绪反应。为了研究各地区的健康和经济差异,调查人员将分析地理位置的职位,并将数据与人口普查局调查的变量相结合。人工智能和数据科学技术将用于处理和分析在这项工作中收集的大量异构数据。根据这些分析,可以制定政策,以改善预防,安全,隐私和其他公众的理解和政策在大流行期间。这个奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan Richardson其他文献
Using public data to measure diversity in computer science research communities: A critical data governance perspective
- DOI:
10.1016/j.clsr.2022.105655 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:
- 作者:
Rachelle Bosua;Marc Cheong;Karin Clark;Damian Clifford;Simon Coghlan;Chris Culnane;Kobi Leins;Megan Richardson - 通讯作者:
Megan Richardson
The Right to Privacy: Origins and Influence of a Nineteenth-Century Idea
隐私权:十九世纪思想的起源和影响
- DOI:
10.1017/9781108303972 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Megan Richardson - 通讯作者:
Megan Richardson
Contact-Tracing Technologies and the Problem of Trust—Framing a Right of Social Dialogue for an Impact Assessment Process in Pandemic Times
接触者追踪技术和信任问题——为大流行时期的影响评估过程制定社会对话权
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
R. Bosua;Damian Clifford;Megan Richardson - 通讯作者:
Megan Richardson
Megan Richardson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Megan Richardson', 18)}}的其他基金
HNDS-I: A Data Visualization Tool for the COVID-19 Online Prevalence of Emotions in Institutions Database
HNDS-I:机构数据库中 COVID-19 在线情绪流行率的数据可视化工具
- 批准号:
2318438 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
Standard Grant
CHS: Large: Collaborative Research: Participatory Design and Evaluation of Socially Assistive Robots for Use in Mental Health Services in Clinics and Patient Homes
CHS:大型:协作研究:用于诊所和患者家庭心理健康服务的社交辅助机器人的参与式设计和评估
- 批准号:
1900883 - 财政年份:2019
- 资助金额:
$ 19.69万 - 项目类别:
Standard Grant
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 19.69万 - 项目类别:
Fellowship
Fast hybrid mass spectrometer for complexome analyses
用于复杂组分析的快速混合质谱仪
- 批准号:
543577782 - 财政年份:2024
- 资助金额:
$ 19.69万 - 项目类别:
Major Research Instrumentation
CAREER: Optoelectronic lab-on-a-chip technology for high content automated multiparametric physiological analyses of live cells
职业:用于活细胞高内涵自动化多参数生理分析的光电芯片实验室技术
- 批准号:
2339030 - 财政年份:2024
- 资助金额:
$ 19.69万 - 项目类别:
Continuing Grant
EAGER: A Novel Hybrid Light-Field and High-Energy Pulse Color and Depth Encoded Illumination PIV Technique for Unsteady Flow Analyses
EAGER:一种用于非稳态流分析的新型混合光场和高能脉冲颜色和深度编码照明 PIV 技术
- 批准号:
2418485 - 财政年份:2024
- 资助金额:
$ 19.69万 - 项目类别:
Standard Grant
CAREER: Tracking the evolution of human locomotion through field, experimental, and computational analyses of fossil footprints
职业:通过对化石足迹的现场、实验和计算分析来跟踪人类运动的演变
- 批准号:
2335894 - 财政年份:2024
- 资助金额:
$ 19.69万 - 项目类别:
Continuing Grant
Individualized treatment for patients with parapneumonic pleural effusion via therapeutic drug monitoring and metagenomic analyses
通过治疗药物监测和宏基因组分析对肺炎旁胸腔积液患者进行个体化治疗
- 批准号:
518875532 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
Research Grants
Evaluating equitable access to diabetic retinopathy screening using social value judgement informed distributional cost-effectiveness analyses (Oppression framework informed equity cost-effectiveness analysis of diabetic retinopathy screening)
使用社会价值判断知情的分配成本效益分析评估糖尿病视网膜病变筛查的公平性(压迫框架知情的糖尿病视网膜病变筛查公平成本效益分析)
- 批准号:
495212 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
Development and validation of a composite measure of physical function using a battery of performance-based measures: A longitudinal analyses of the Canadian Longitudinal Study on Aging
使用一系列基于表现的测量方法开发和验证身体机能的综合测量方法:加拿大老龄化纵向研究的纵向分析
- 批准号:
499193 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
Operating Grants
Econometric Analyses on the Structural Changes in Food Demand
粮食需求结构变化的计量经济学分析
- 批准号:
23H00806 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Can coronaviruses induce Kawasaki disease? Comprehensive analyses with multiplex PCR and antibody panel
冠状病毒会诱发川崎病吗?
- 批准号:
23K07315 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)