HNDS-I: A Data Visualization Tool for the COVID-19 Online Prevalence of Emotions in Institutions Database
HNDS-I:机构数据库中 COVID-19 在线情绪流行率的数据可视化工具
基本信息
- 批准号:2318438
- 负责人:
- 金额:$ 29.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The COVID-19 Online Prevalence of Emotions in Institutions (COPE-ID) database contains online discussions of COVID-19, including posts about emotions, such as fear, anxiety, and social institutions, such as healthcare and family. These data can be used to answer questions about the spread of information and individual well-being during the COVID-19 pandemic. This project creates a data visualization tool to process social media data from COPE-ID. This tool makes it easier for people to explore large volumes of social media data to study the emotions, thoughts, behaviors, and health of people during a pandemic or related disaster. The visualization tool allows researchers of all backgrounds and skill levels to access and process data from the COPE-ID, as well as data from other social media sources. Improving access to COPE-ID data can inform future public health policies and interventions. The data visualization tool’s users will be able to access an overview of large social media datasets through a platform dashboard. The dashboard presents visualizations of the data that are constructed by topic modeling algorithms, which produce a summary of the data in the form of word and topic frequencies. The tool also allows users to perform sentiment analysis, such as the attitude toward topics from negative to positive. Visualizations such as word clouds and time series charts generate insights for users to drive their task-based interactions with the tool. Users can also request samples of data that can be labeled using qualitative or content analysis. This labeled data can then be used to make predictions about future events, predictions that are generated by advanced statistical analyses or machine learning techniques. Training datasets can be used to code and process COPE-ID data, and these coded datasets can be used to examine the rate of agreement between coders so that the quality of the data can be improved. The tool improves scientists' access to social media data and allow researchers to test theories of human behavior using user generated big data. This project is jointly funded by Human Networks and Data Science -- Infrastructure (HNDS-I) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
COVID-19机构情绪在线流行率(COPE-ID)数据库包含有关COVID-19的在线讨论,包括有关情绪(如恐惧、焦虑)和社会机构(如医疗保健和家庭)的帖子。这些数据可用于回答有关COVID-19大流行期间信息传播和个人福祉的问题。该项目创建了一个数据可视化工具来处理COPE-ID中的社交媒体数据。该工具使人们更容易探索大量的社交媒体数据,以研究流行病或相关灾难期间人们的情绪,思想,行为和健康状况。可视化工具允许所有背景和技能水平的研究人员访问和处理来自COPE-ID的数据,以及来自其他社交媒体来源的数据。改善COPE-ID数据的获取可以为未来的公共卫生政策和干预措施提供信息。 数据可视化工具的用户将能够通过平台仪表板访问大型社交媒体数据集的概述。仪表板显示由主题建模算法构建的数据的可视化,这些算法以单词和主题频率的形式生成数据的摘要。该工具还允许用户进行情感分析,例如对主题的态度从消极到积极。诸如词云和时间序列图表之类的可视化为用户生成洞察力,以推动他们与该工具进行基于任务的交互。用户还可以请求可以使用定性或内容分析进行标记的数据样本。然后,这些标记的数据可以用于对未来事件进行预测,这些预测是由高级统计分析或机器学习技术生成的。训练数据集可用于编码和处理COPE-ID数据,这些编码数据集可用于检查编码器之间的一致率,从而提高数据的质量。该工具改善了科学家对社交媒体数据的访问,并允许研究人员使用用户生成的大数据来测试人类行为理论。 该项目由人类网络和数据科学-基础设施(HNDS-I)和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan Richardson其他文献
Using public data to measure diversity in computer science research communities: A critical data governance perspective
- DOI:
10.1016/j.clsr.2022.105655 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:
- 作者:
Rachelle Bosua;Marc Cheong;Karin Clark;Damian Clifford;Simon Coghlan;Chris Culnane;Kobi Leins;Megan Richardson - 通讯作者:
Megan Richardson
The Right to Privacy: Origins and Influence of a Nineteenth-Century Idea
隐私权:十九世纪思想的起源和影响
- DOI:
10.1017/9781108303972 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Megan Richardson - 通讯作者:
Megan Richardson
Contact-Tracing Technologies and the Problem of Trust—Framing a Right of Social Dialogue for an Impact Assessment Process in Pandemic Times
接触者追踪技术和信任问题——为大流行时期的影响评估过程制定社会对话权
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
R. Bosua;Damian Clifford;Megan Richardson - 通讯作者:
Megan Richardson
Megan Richardson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Megan Richardson', 18)}}的其他基金
RAPID: Analyses of Emotions Expressed in Social Media and Forums During the COVID-19 Pandemic
RAPID:对 COVID-19 大流行期间社交媒体和论坛中表达的情绪进行分析
- 批准号:
2031246 - 财政年份:2020
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
CHS: Large: Collaborative Research: Participatory Design and Evaluation of Socially Assistive Robots for Use in Mental Health Services in Clinics and Patient Homes
CHS:大型:协作研究:用于诊所和患者家庭心理健康服务的社交辅助机器人的参与式设计和评估
- 批准号:
1900883 - 财政年份:2019
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
- 批准号:
2313124 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
- 批准号:
2313122 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Phonon Database Generation, Analysis, and Visualization for Data Driven Materials Discovery
协作研究:要素:数据驱动材料发现的声子数据库生成、分析和可视化
- 批准号:
2311202 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
What's next? Using data visualization to make sense of personalised paediatric critical care pathways
下一步是什么?
- 批准号:
2887315 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Studentship
20-BBSRC/NSF-BIO: From atoms to molecules to cells - Multi-scale tools and infrastructure for visualization of annotated 3D structure data
20-BBSRC/NSF-BIO:从原子到分子到细胞 - 用于注释 3D 结构数据可视化的多尺度工具和基础设施
- 批准号:
BB/W017970/1 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Research Grant
CAREER: Manipulable Semantic Components in Data Visualization Design
职业:数据可视化设计中的可操作语义组件
- 批准号:
2239130 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Students’ Interests, Identities and Ways of Knowing with Network Visualization Tools to Explore Data Literacy Concepts
协作研究:将学生的兴趣、身份和认知方式与网络可视化工具相结合,探索数据素养概念
- 批准号:
2241706 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 1: Advanced cloud-based Data- and Visualization-Integrated Simulation EnviRonment (ADVISER) to Advance Computational Glaciology
合作研究:GEO OSE Track 1:先进的基于云的数据和可视化集成模拟环境 (ADVISER),以推进计算冰川学
- 批准号:
2324737 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
- 批准号:
2313123 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Development of an AI-empowered device that utilizes multimodal data-visualization to aid in the diagnosis, and treatment, of OUD
开发人工智能设备,利用多模式数据可视化来帮助 OUD 的诊断和治疗
- 批准号:
10683816 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别: