RAPID: Modeling the Severity and Transmissibility of COVID-19 in the USA with Intrinsic Behavior Change
RAPID:通过内在行为变化对美国 COVID-19 的严重性和传播性进行建模
基本信息
- 批准号:2031536
- 负责人:
- 金额:$ 19.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As COVID-19 spreads through communities across the world, and particularly within the USA, a number of questions remain unanswered. Of particular importance is to what extent different mitigation and containment strategies affect the resulting number of ICU cases and/or deaths? This question will become ever more nuanced as communities begin to relax current “lockdown” orders to varying degrees. Additionally, to what extent do spatial and temporal changes in weather (temperature, precipitation, and humidity) as well as UV radiation modulate the disease’s evolution? Through a combination of unique data collection, model refinement, and scientific investigation, this study can shed valuable insight on these questions. The codes and derived data will be made available to the scientific community through GitHub repositories, CRAN packages, and web portals, and informal training will be provided for potentially interested stakeholders, such as county public health departments, the CDC, and DoD agencies.This investigation will use an existing state-of-the-art modeling and forecasting framework, Dynamics of Interacting Community Epidemics (DICE), to examine the human ecology of COVID-19 dynamics. DICE is a unique tool that can help reveal the impact of different containment and non-pharmaceutical mitigation strategies, as well as climate forcing, on the transmission of COVID-19. Uniquely, it is an arbitrarily scaled hybrid spatial metapopulation model in which individual communities experience deterministic disease dynamics, but between which the process of one community seeding an outbreak in another community is stochastic. DICE can be run at the county, state, region, or national level, or, various combinations of these sub-units can be coupled, depending on what data are available. DICE solves the system of SE1…EnI1…ImRX equations producing a modeled incidence profile and estimates of the reproduction number as a function of time, R(t), the severity of the outbreak, and parameters quantifying the efficacy of interventions. DICE already has the capability of incorporating school vacation data, and uses climate data from NASA and NOAA, and specific humidity, in particular, which has been shown to be important in forecasting the evolution of influenza. A range of methodologies for incorporating interventions, such as school closures, social distancing, and shelter-in-place orders have been recently tested and explored using a complementary single-population prototype tool (DRAFT), specifically developed to rapidly explore refinements that can be incorporated into DICE. DICE can both simulate possible future scenarios as well as fit to available data to estimate the efficacy of different intervention profiles, and also captures joint estimates of severity (Sev) and transmissibility (R(t)). As COVID-19 spreads across the U.S., community transmission can be evaluated in R-Sev space, which will provide crucial and strategic information to assist policymakers in making more informed decisions. Through the use of a Monte Carlo Markov Chain (MCMC) approach, DICE produces robust estimates of the uncertainties in the projections. Additionally, DICE is a multi-model algorithm, allowing the generation of forecasts for more than 32 model variants, which provides not only an estimate of the impact that various factors may play (e.g., climate), but also produces hyper-ensembles of model realizations, which, in turn provide additional estimates of uncertainty. This RAPID award is made by the Ecology and Evolution of Infectious Disease Program in the Division of Environmental Biology, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着COVID-19在世界各地的社区传播,特别是在美国,许多问题仍然没有答案。特别重要的是,不同的缓解和遏制策略在多大程度上影响了ICU病例和/或死亡人数?随着社区开始在不同程度上放松当前的“封锁”命令,这个问题将变得越来越微妙。此外,天气(温度、降水和湿度)以及紫外线辐射的时空变化在多大程度上调节了疾病的演变?通过独特的数据收集,模型改进和科学调查的结合,这项研究可以对这些问题提供有价值的见解。 这些代码和衍生数据将通过GitHub存储库、CRAN包和门户网站提供给科学界,并将为潜在的利益相关者提供非正式培训,如县公共卫生部门、CDC和国防部机构。这项调查将使用现有的最先进的建模和预测框架,互动社区流行病动态(DICE),来研究COVID-19的人类生态学动态。DICE是一种独特的工具,可以帮助揭示不同的遏制和非药物缓解策略以及气候强迫对COVID-19传播的影响。独特的是,它是一个任意尺度的混合空间集合种群模型,其中单个社区经历确定性疾病动态,但其中一个社区在另一个社区传播疾病的过程是随机的。DICE可以在县、州、地区或国家一级运行,或者根据可用的数据,可以耦合这些子单元的各种组合。DICE求解SE1.EnI1.ImRX方程系统,生成建模的发病率曲线和作为时间、R(t)、爆发严重程度和量化干预效果的参数的函数的繁殖数量估计值。DICE已经有能力整合学校假期数据,并使用NASA和NOAA的气候数据,特别是特定湿度,这在预测流感演变方面非常重要。一系列纳入干预措施的方法,如学校关闭,社交距离,和庇护场所的订单,最近进行了测试和探索,使用一个互补的单一人口原型工具(草案),专门开发,以快速探索可以纳入DICE的改进。DICE既可以模拟可能的未来情景,也可以拟合现有数据,以估计不同干预方案的有效性,还可以捕获严重程度(Sev)和可传播性(R(t))的联合估计值。随着COVID-19在美国蔓延,可在R-Sev空间中评估社区传播情况,这将提供关键的战略信息,协助决策者作出更知情的决定。通过使用蒙特卡罗马尔可夫链(MCMC)方法,DICE对预测中的不确定性进行了稳健的估计。此外,DICE是一种多模型算法,允许为超过32个模型变量生成预测,这不仅提供了对各种因素可能发挥的影响的估计(例如,气候),但也产生超集合的模型实现,这反过来又提供了额外的估计不确定性。该奖项由环境生物学部门的传染病生态学和进化计划颁发,使用冠状病毒援助,救济和经济安全(CARES)法案的资金。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Riley其他文献
Endovascular stent-grafting for thoracic aortic aneurysm: Experiences of one centre with regards to outcomes and consenting
- DOI:
10.1016/j.ijsu.2013.06.132 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:
- 作者:
John Massey;Viv Barnett;Peter Riley;Ian McCafferty;Aaron Ranasinghe;Jorge Mascaro - 通讯作者:
Jorge Mascaro
The Influence of Medial Substructures on Rupture in Bovine Aortas
- DOI:
10.1007/s13239-011-0056-4 - 发表时间:
2011-08-02 - 期刊:
- 影响因子:1.800
- 作者:
Henry W. Haslach;Peter Riley;Aviva Molotsky - 通讯作者:
Aviva Molotsky
Co-creation of a Patient-Reported Outcome Measure for Older People Living with Frailty Receiving Acute Care (PROM-OPAC)
共同制定接受紧急护理的虚弱老年人的患者报告结果衡量标准 (PROM-OPAC)
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.5
- 作者:
J. V. van Oppen;T. Coats;S. Conroy;Jagruti Lalseta;Vivien Richardson;Peter Riley;J. Valderas;N. Mackintosh - 通讯作者:
N. Mackintosh
INHALE WP3, a multicentre, open-label, pragmatic randomised controlled trial assessing the impact of rapid, ICU-based, syndromic PCR, versus standard-of-care on antibiotic stewardship and clinical outcomes in hospital-acquired and ventilator-associated pneumonia
- DOI:
10.1007/s00134-024-07772-2 - 发表时间:
2025-02-17 - 期刊:
- 影响因子:21.200
- 作者:
Virve I. Enne;Susan Stirling;Julie A. Barber;Juliet High;Charlotte Russell;David Brealey;Zaneeta Dhesi;Antony Colles;Suveer Singh;Robert Parker;Mark Peters;Benny P. Cherian;Peter Riley;Matthew Dryden;Ruan Simpson;Nehal Patel;Jane Cassidy;Daniel Martin;Ingeborg D. Welters;Valerie Page;Hala Kandil;Eleanor Tudtud;David Turner;Robert Horne;Justin O’Grady;Ann Marie Swart;David M. Livermore;Vanya Gant - 通讯作者:
Vanya Gant
Identifying models of care to improve outcomes for older people with urgent care needs: a mixed methods approach to develop a system dynamics model.
确定护理模型以改善有紧急护理需求的老年人的结果:开发系统动力学模型的混合方法。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Simon Conroy;Sally Brailsford;C. Burton;Tracey England;Jagruti Lalseta;Graham P. Martin;Suzanne Mason;Laia Maynou;Kay Phelps;L. Preston;E. Regen;Peter Riley;Andrew Street;J. V. van Oppen - 通讯作者:
J. V. van Oppen
Peter Riley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Riley', 18)}}的其他基金
SHINE: Understanding the Sun's Open Magnetic Flux
SHINE:了解太阳的开放磁通量
- 批准号:
1032227 - 财政年份:2009
- 资助金额:
$ 19.96万 - 项目类别:
Continuing Grant
SHINE: Understanding the Sun's Open Magnetic Flux
SHINE:了解太阳的开放磁通量
- 批准号:
0648758 - 财政年份:2007
- 资助金额:
$ 19.96万 - 项目类别:
Continuing Grant
Constraining Models of Coronal Mass Ejections (CMEs): Comparisons with Solar and In-Situ Observations
日冕物质抛射 (CME) 的约束模型:与太阳观测和现场观测的比较
- 批准号:
0203817 - 财政年份:2002
- 资助金额:
$ 19.96万 - 项目类别:
Continuing Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 19.96万 - 项目类别:
Standard Grant
CAREER: Modeling and Decoding Host-Microbiome Interactions in Gingival Tissue
职业:建模和解码牙龈组织中宿主-微生物组的相互作用
- 批准号:
2337322 - 财政年份:2024
- 资助金额:
$ 19.96万 - 项目类别:
Continuing Grant
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
- 批准号:
2338621 - 财政年份:2024
- 资助金额:
$ 19.96万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 19.96万 - 项目类别:
Continuing Grant
Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
- 批准号:
2346964 - 财政年份:2024
- 资助金额:
$ 19.96万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 19.96万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 19.96万 - 项目类别:
Standard Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
- 批准号:
2340882 - 财政年份:2024
- 资助金额:
$ 19.96万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 19.96万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 19.96万 - 项目类别:
Standard Grant