Quantum Machine Learning Online Materials and Software Modules for Undergraduate Education

适用于本科教育的量子机器学习在线材料和软件模块

基本信息

  • 批准号:
    2215998
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

This project aims to serve the national interest by introducing undergraduate students to Quantum Computing (QC), establishing foundations and software tools for workforce development in QC, and implementing these tools in Electrical Engineering and other STEM courses at the undergraduate level. The project plans to develop online content, modules and interactive software to introduce undergraduate students to Quantum computing with emphasis on quantum machine learning (QML). The project team will engage undergraduate students in Electrical and Computer Engineering as well as students from other STEM areas. The project will also include workforce-focused research experiences for undergraduate (REU) students during the summers. The team will also include a research experience for STEM teachers during the summer. The content developed for quantum information systems will be adapted for different groups, including undergraduate students, REU students, and for high school outreach. Grant activities and objectives also include developing a diverse community of users, innovative video-streamed content, interactive software for skill building, and summer training workshops. The materials created will: a) impact several STEM disciplines, b) engage and energize undergraduate students, c) create impactful quantum information science awareness and introductory skills, and d) establish modules and tools for workforce development in quantum information systems. This project is motivated by the national need to develop a workforce in quantum computing with emphasis on QML. The project team will develop and thoroughly assess several QML products for undergraduate courses and training, including widely accessible online materials and interactive software. Materials and modules developed will support senior level elective courses in signal processing and machine learning. The project will introduce undergraduate students to Quantum computing and QML, using application-driven materials and interactive software. Assessment will be handled by the College Research and Evaluation Services Team (CREST). Finally, the project seeks to broaden participation through several strategies including collaborations with minority student chapters and minority serving institutions, and the leveraging of international university collaborations for global dissemination. Specific products include interactive analysis and visualization software tools for quantum machine learning and quantum Fourier transforms. These tools will enable students to understand and experiment with quantum parameters and assess their effect in compelling applications such as voice recognition. The assessment team will evaluate all the modules, their ability to engage students, capabilities in broadening participation, and the overall effectiveness of QML materials and interactive software in workforce development. The project will use a mixed-method assessment process (qualitative and quantitative data collection) to build an understanding of the impact of the use of the quantum computing tools on student learning gains. Assessments will be done through electronic web tools, pre- and post-quizzes, presentations, one-to-one interviews, and ordinary in-class testing. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目旨在通过向本科生介绍量子计算(QC),建立QC劳动力发展的基础和软件工具,并在电气工程和其他本科水平的STEM课程中实施这些工具,为国家利益服务。该项目计划开发在线内容、模块和交互软件,向本科生介绍量子计算,重点是量子机器学习(QML)。项目团队将招收电气和计算机工程专业的本科生以及来自其他STEM领域的学生。该项目还将在夏季为本科生(REU)提供以劳动力为重点的研究经验。该团队还将在夏季为STEM教师提供研究经验。为量子信息系统开发的内容将适用于不同的群体,包括本科生、REU学生和高中外展。赠款活动和目标还包括发展多样化的用户社区、创新的视频流内容、用于技能建设的交互式软件以及夏季培训讲习班。创建的材料将:a)影响几个STEM学科,b)吸引和激励本科生,c)创造有影响力的量子信息科学意识和入门技能,d)为量子信息系统中的劳动力发展建立模块和工具。这个项目的动机是国家需要发展量子计算方面的劳动力,重点是量子机器学习。项目团队将为本科课程和培训开发和全面评估几个QML产品,包括广泛访问的在线材料和交互式软件。开发的材料和模块将支持信号处理和机器学习的高级选修课程。该项目将使用应用驱动材料和交互式软件向本科生介绍量子计算和QML。评估将由学院研究和评估服务小组(CREST)处理。最后,该项目寻求通过若干战略扩大参与,包括与少数民族学生分会和少数民族服务机构合作,以及利用国际大学合作促进全球传播。具体产品包括用于量子机器学习和量子傅里叶变换的交互式分析和可视化软件工具。这些工具将使学生能够理解和实验量子参数,并评估它们在语音识别等引人注目的应用中的效果。评估小组将评估所有课程单元,评估其吸引学生的能力、扩大参与的能力,以及QML教材和互动软件在劳动力发展方面的整体有效性。该项目将使用混合方法评估过程(定性和定量数据收集),以了解使用量子计算工具对学生学习收益的影响。评估将通过电子网络工具、前后测验、演讲、一对一访谈和普通的课堂测试来完成。NSF IUSE: EHR计划支持研究和开发项目,以提高所有学生STEM教育的有效性。通过参与学生学习轨道,该计划支持有前途的实践和工具的创建,探索和实施。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Spanias其他文献

Despeckle Filtering Algorithms and Software for Ultrasound Imaging Despeckle Filtering Algorithms and Software for Ultrasound Imaging Despeckle Filtering Algorithms and Software for Ultrasound Imaging Synthesis Lectures on Algorithms and Software in Engineering #1
超声成像去斑滤波算法和软件 超声成像去斑滤波算法和软件 超声成像去斑滤波算法和软件 工程算法和软件综合讲座
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Loizou;C. Pattichis;Eleni Loizou;Andreas Spanias
  • 通讯作者:
    Andreas Spanias
Adaptive noise cancellation using fast optimum block algorithms
使用快速最佳块算法的自适应噪声消除
Gradient projection-based channel equalization under sustained fading
  • DOI:
    10.1016/j.sigpro.2007.07.014
  • 发表时间:
    2008-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Venkatraman Atti;Andreas Spanias;Kostas Tsakalis;Constantinos Panayiotou;Leon Iasemidis;Visar Berisha
  • 通讯作者:
    Visar Berisha
Introducing Quantum Computing in a Sophomore Signals and Systems Course
在大二信号与系统课程中介绍量子计算
  • DOI:
    10.1109/fie58773.2023.10343312
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chao Wang;Aradhita Sharma;Glen S. Uehara;Leslie Miller;Deep Pujara;W. Barnard;Jean Larson;Andreas Spanias
  • 通讯作者:
    Andreas Spanias
Quantum and Classical Machine Learning Algorithm Comparisons for Monitoring PV Array Faults with Emphasis to Shading Detection
用于监测光伏阵列故障的量子和经典机器学习算法比较,重点是阴影检测
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaden McGuffie;Glen S. Uehara;Sameeksha Katoch;Andreas Spanias
  • 通讯作者:
    Andreas Spanias

Andreas Spanias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Spanias', 18)}}的其他基金

REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
  • 批准号:
    2349567
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MRI: Development of a Sensors and Machine Learning Instrument Suite for Solar Array Monitoring
MRI:开发用于太阳能阵列监测的传感器和机器学习仪器套件
  • 批准号:
    2019068
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RET Site: Sensor, Signal and Information Processing Algorithms and Software
RET 站点:传感器、信号和信息处理算法和软件
  • 批准号:
    1953745
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Covid-19 Hotspot Network Size and Node Counting using Consensus Estimation
RAPID:协作研究:使用共识估计的 Covid-19 热点网络规模和节点计数
  • 批准号:
    2032114
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
IRES Track I: Sensors and Machine Learning for Solar Power Monitoring and Control
IRES Track I:用于太阳能监测和控制的传感器和机器学习
  • 批准号:
    1854273
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
REU Site: Sensor, Signal and Information Processing Devices and Algorithms
REU 网站:传感器、信号和信息处理设备和算法
  • 批准号:
    1659871
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I/UCRC Phase II: ASU Research Site of the NSF Net-Centric and Cloud Software and Systems I/UCRC
I/UCRC 第二阶段:美国国家科学基金会 (NSF) 网络中心和云软件与系统的 ASU 研究站点 I/UCRC
  • 批准号:
    1540040
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Image Modeling and Machine Learning Algorithms for Utility-Scale Solar Panel Monitoring
CPS:协同:用于公用事业规模太阳能电池板监控的图像建模和机器学习算法
  • 批准号:
    1646542
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I/UCRC: Workshops Promoting International USA-Mexico Collaborations in Sensors and Signal Processing
I/UCRC:促进美国-墨西哥在传感器和信号处理领域国际合作的研讨会
  • 批准号:
    1550393
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Development of Scalable Mobile Multidisciplinary Modules (SM3) for STEM Education
合作研究:STEM教育可扩展移动多学科模块(SM3)的集成开发
  • 批准号:
    1525716
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
  • 批准号:
    10073285
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Feasibility Studies
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
  • 批准号:
    23K20272
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
  • 批准号:
    2349567
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
  • 批准号:
    23K13008
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Utilising Quantum Machine Learning and quantum computing for genomic research and development
利用量子机器学习和量子计算进行基因组研究和开发
  • 批准号:
    10083188
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Small Business Research Initiative
Machine-learning quantum surrogate models to simulate energy transport across interfaces
机器学习量子替代模型来模拟跨界面的能量传输
  • 批准号:
    2886134
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Scalable Quantum Machine Learning with NISQ Devices: Theoretic and Algorithmic Foundations
使用 NISQ 设备的可扩展量子机器学习:理论和算法基础
  • 批准号:
    2882984
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Development of an efficient method combining quantum chemistry and machine learning to evolve PCR technology and gene mutation analysis
开发一种结合量子化学和机器学习的有效方法来发展 PCR 技术和基因突变分析
  • 批准号:
    22KJ2450
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development and spectral analysis of an ensemble machine learning model using quantum chemical descriptors
使用量子化学描述符的集成机器学习模型的开发和光谱分析
  • 批准号:
    23K04678
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient tuning of quantum devices using machine learning
使用机器学习有效调整量子器件
  • 批准号:
    2886876
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了