MRI: Development of a Sensors and Machine Learning Instrument Suite for Solar Array Monitoring

MRI:开发用于太阳能阵列监测的传感器和机器学习仪器套件

基本信息

  • 批准号:
    2019068
  • 负责人:
  • 金额:
    $ 34.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This project develops a testbed for solar energy grids that brings together several labs, centers, and researchers to address • Elevating power efficiency in solar farms, • Automatic fault detection, • Maximizing solar power output, • Optimizing inverter performance, • Providing secure communication for analytics, and m• Making provisions for Smart Grid. Solar energy research strives to solve challenging problems in increased photovoltaic (PV) efficiency, grid management, power storage, intelligent inverters, and various problems of economic nature, such as financing and manufacturing. The instrument is intended to enable several innovations and elevate the state of the art of solar technologies. It enables research on integrating sensors and machine learning to elevate considerably the output power and robustness of solar arrays. The seamless integration of several software and hardware components is designed to enhance all aspects of solar array monitoring and control. 'A key component of the instrument, an Intelligent Monitoring and Control Device (IMCD) consists of sensors, actuators, a processor/controller chip, a secure radio, embedded machine learning software, and signal processing and authentication algorithms. The overarching long term goal is to Miniaturize IMCDs with the goal to embed it in photovoltaic (PV) modules, to enable the building of a new generation of smart programmable PV modules. This platform integrates a new intelligent monitoring and control instrument suite and enabling researchers to obtain, process, and utilize real-time PV and environmental data in order to: • Develop, integrate and test detection and classification algorithms for PV faults;• Track cloud movement and predict panel shading, and hence optimize further the output of PV arrays; • Use secure networked connectivity and protocols to protect data and avoid MRI instrument hacking;• Integrate all the acquired data using fusion algorithms and enable appropriate control of the panels; • Predict and eliminate inverter transients caused by faults and dynamic shading conditions; • Provide continuous analytics and create a mobile dashboard to monitor and control the array; • Use data and design ground breaking optimization algorithms to improve the PV array power output;• Elevate overall efficiency of solar farms in terms of power output by more than 16%; • Create the foundations for designing a new generation of solar panel technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目为太阳能电网开发了一个测试平台,汇集了多个实验室,中心和研究人员,以解决·提高太阳能发电场的功率效率,·自动故障检测,·最大限度地提高太阳能发电量,·优化逆变器性能,·为分析提供安全通信,以及·为智能电网做准备。太阳能研究致力于解决提高光伏(PV)效率,电网管理,电力存储,智能逆变器以及各种经济性问题(如融资和制造)方面的挑战性问题。该仪器旨在实现几项创新并提升太阳能技术的最新水平。它使集成传感器和机器学习的研究能够大大提高太阳能电池阵列的输出功率和鲁棒性。多个软件和硬件组件的无缝集成旨在增强太阳能电池阵列监测和控制的各个方面。作为仪器的关键组件,智能监控设备(IMCD)由传感器,执行器,处理器/控制器芯片,安全无线电,嵌入式机器学习软件以及信号处理和认证算法组成。首要的长期目标是将IMCD小型化,目标是将其嵌入光伏(PV)模块中,以实现新一代智能可编程光伏模块的构建。该平台集成了一个新的智能监测和控制仪器套件,使研究人员能够获取、处理和利用实时光伏和环境数据,以便:·开发、集成和测试光伏故障的检测和分类算法;·跟踪云层移动并预测面板阴影,从而进一步优化光伏阵列的输出;·使用安全的网络连接和协议来保护数据并避免MRI仪器黑客攻击;·使用融合算法整合所有采集的数据并实现对面板的适当控制; ·预测并消除由故障和动态阴影条件引起的逆变器瞬变;·提供持续分析并创建移动的仪表板来监控和控制阵列; ·使用数据和设计突破性的优化算法来提高光伏阵列的功率输出;·将太阳能发电场的整体效率提高16%以上;·为设计新一代太阳能电池板技术奠定基础。该奖项反映了NSF的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Spanias其他文献

Despeckle Filtering Algorithms and Software for Ultrasound Imaging Despeckle Filtering Algorithms and Software for Ultrasound Imaging Despeckle Filtering Algorithms and Software for Ultrasound Imaging Synthesis Lectures on Algorithms and Software in Engineering #1
超声成像去斑滤波算法和软件 超声成像去斑滤波算法和软件 超声成像去斑滤波算法和软件 工程算法和软件综合讲座
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Loizou;C. Pattichis;Eleni Loizou;Andreas Spanias
  • 通讯作者:
    Andreas Spanias
Adaptive noise cancellation using fast optimum block algorithms
使用快速最佳块算法的自适应噪声消除
Gradient projection-based channel equalization under sustained fading
  • DOI:
    10.1016/j.sigpro.2007.07.014
  • 发表时间:
    2008-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Venkatraman Atti;Andreas Spanias;Kostas Tsakalis;Constantinos Panayiotou;Leon Iasemidis;Visar Berisha
  • 通讯作者:
    Visar Berisha
Introducing Quantum Computing in a Sophomore Signals and Systems Course
在大二信号与系统课程中介绍量子计算
  • DOI:
    10.1109/fie58773.2023.10343312
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chao Wang;Aradhita Sharma;Glen S. Uehara;Leslie Miller;Deep Pujara;W. Barnard;Jean Larson;Andreas Spanias
  • 通讯作者:
    Andreas Spanias
Quantum and Classical Machine Learning Algorithm Comparisons for Monitoring PV Array Faults with Emphasis to Shading Detection
用于监测光伏阵列故障的量子和经典机器学习算法比较,重点是阴影检测
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaden McGuffie;Glen S. Uehara;Sameeksha Katoch;Andreas Spanias
  • 通讯作者:
    Andreas Spanias

Andreas Spanias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Spanias', 18)}}的其他基金

REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
  • 批准号:
    2349567
  • 财政年份:
    2024
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
Quantum Machine Learning Online Materials and Software Modules for Undergraduate Education
适用于本科教育的量子机器学习在线材料和软件模块
  • 批准号:
    2215998
  • 财政年份:
    2022
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
RET Site: Sensor, Signal and Information Processing Algorithms and Software
RET 站点:传感器、信号和信息处理算法和软件
  • 批准号:
    1953745
  • 财政年份:
    2020
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Covid-19 Hotspot Network Size and Node Counting using Consensus Estimation
RAPID:协作研究:使用共识估计的 Covid-19 热点网络规模和节点计数
  • 批准号:
    2032114
  • 财政年份:
    2020
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
IRES Track I: Sensors and Machine Learning for Solar Power Monitoring and Control
IRES Track I:用于太阳能监测和控制的传感器和机器学习
  • 批准号:
    1854273
  • 财政年份:
    2019
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
REU Site: Sensor, Signal and Information Processing Devices and Algorithms
REU 网站:传感器、信号和信息处理设备和算法
  • 批准号:
    1659871
  • 财政年份:
    2017
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
I/UCRC Phase II: ASU Research Site of the NSF Net-Centric and Cloud Software and Systems I/UCRC
I/UCRC 第二阶段:美国国家科学基金会 (NSF) 网络中心和云软件与系统的 ASU 研究站点 I/UCRC
  • 批准号:
    1540040
  • 财政年份:
    2016
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Image Modeling and Machine Learning Algorithms for Utility-Scale Solar Panel Monitoring
CPS:协同:用于公用事业规模太阳能电池板监控的图像建模和机器学习算法
  • 批准号:
    1646542
  • 财政年份:
    2016
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
I/UCRC: Workshops Promoting International USA-Mexico Collaborations in Sensors and Signal Processing
I/UCRC:促进美国-墨西哥在传感器和信号处理领域国际合作的研讨会
  • 批准号:
    1550393
  • 财政年份:
    2015
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Development of Scalable Mobile Multidisciplinary Modules (SM3) for STEM Education
合作研究:STEM教育可扩展移动多学科模块(SM3)的集成开发
  • 批准号:
    1525716
  • 财政年份:
    2015
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

STTR Phase I: Development and Analysis of Functional NanoInks for Printed Neuromorphic Electronics and Smart Sensors
STTR 第一阶段:用于印刷神经形态电子和智能传感器的功能性纳米墨水的开发和分析
  • 批准号:
    2334413
  • 财政年份:
    2024
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Continuing Grant
Development of 320x256 pixel metamaterial infrared image sensors for visualizing invisible gases
开发用于可视化不可见气体的 320x256 像素超材料红外图像传感器
  • 批准号:
    23H01883
  • 财政年份:
    2023
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of pathogen sensors based on the detection of host recognition molecules for the post-PCR era
后PCR时代基于宿主识别分子检测的病原体传感器的开发
  • 批准号:
    23K17767
  • 财政年份:
    2023
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
The development of Machine Learning methods to correct data responses from low-cost sensors to improve agricultural productivity and air quality data accuracy.
开发机器学习方法来纠正低成本传感器的数据响应,以提高农业生产力和空气质量数据的准确性。
  • 批准号:
    10081002
  • 财政年份:
    2023
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Collaborative R&D
Development of SERS substrate made of melt-blown non-woven fabric and its application to odor sensors
熔喷无纺布SERS基底的研制及其在气味传感器中的应用
  • 批准号:
    23K03881
  • 财政年份:
    2023
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Accelerated Development of New, Scalable pH Sensors for Global Ocean Observational Networks
合作研究:加速开发用于全球海洋观测网络的新型可扩展 pH 传感器
  • 批准号:
    2300400
  • 财政年份:
    2023
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Continuing Grant
Development of Wearable Sensors for Medical Diagnostics and Monitoring Health and Wellbeing
开发用于医疗诊断和健康监测的可穿戴传感器
  • 批准号:
    2888776
  • 财政年份:
    2023
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Studentship
Development of Wearable Electrochemical Aptamer-based Sensors for Detection of Stress Markers
开发用于检测压力标记的可穿戴电化学适体传感器
  • 批准号:
    22KJ1290
  • 财政年份:
    2023
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of wireless, wearable flow sensors for continuous, long-term tracking of cerebrospinal fluid dynamics in patients with hydrocephalus
开发无线可穿戴流量传感器,用于连续、长期跟踪脑积水患者的脑脊液动力学
  • 批准号:
    10728656
  • 财政年份:
    2023
  • 资助金额:
    $ 34.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了