Using First Principles Calculations and Electro-Pulse Annealing to Design and Manufacture Low-Cost Permanent Magnets

使用第一原理计算和电脉冲退火来设计和制造低成本永磁体

基本信息

  • 批准号:
    2032592
  • 负责人:
  • 金额:
    $ 51.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Demand for high-performance permanent magnets is increasing rapidly for applications such as wind turbine generators and electric and hybrid car motors. Samarium-cobalt (Sm-Co) and Neodymium-iron-boron (Nd-Fe-B) rare earth magnets are generally used for such challenging applications. While rare earth magnets are the best currently available permanent magnets, they tend to be brittle, suffer from thermal shock and experience corrosion. Additionally, rare earth mining has been associated with severe environmental degradation and prohibitive energy usage. Nickel-iron, which has been identified in meteorites as the compound Tetrataenite where it transformed from a high temperature phase to a low temperature magnetic phase over thousands of years, has magnetic properties comparable to that of rare earth magnets. This award develops nickel-iron based permanent magnets using quantum-mechanical calculations to predict the effects of alloying and experiments to verify the effects of these additional elements on the transformation kinetics and magnetic properties of these materials. A novel pulsed electrical heating is used to accelerate the phase transformation. The development of novel nickel-iron magnets enables production of permanent magnets at low cost, which impacts the U.S. economy and security. The project engages women and under-represented minorities in multi-disciplinary research activities and develops a website that offers simple virtual experiments to explain to a wide audience magnetism and the materials science of permanent magnets.The L10-structured compound nickel-iron (NiFe) has the potential to replace rare earth (RE) magnets at low cost. NiFe has a magnetic anisotropy energy, ku, of 1.3 x 106 J.m-3 and a saturation magnetization m0MS of 1.59 Tesla, which is comparable to that of Nd2Fe14B, and it has good corrosion resistance. The challenge is that the binary L10 compound has a very low transformation temperature from the high-temperature face centered cubic (f.c.c.) phase of about 320oC that forms on casting and, thus, orders very slowly at temperatures where it is stable. This project combines ab initio quantum mechanical calculations and experimental work to design new L10-structured NiFe magnets with ternary elemental additions. These ternary compounds potentially have a significantly higher f.c.c.-to-L10 transformation temperatures and higher diffusivities than binary NiFe but have similar saturation magnetizations. Thus, the L10 phase can be produced at higher temperature in short, commercially-viable times utilizing electro-pulse annealing of cold-worked material, which has also been shown to dramatically accelerate recrystallization in NiFe. Commercially, NiFe can be manufactured by continuous electro-pulse annealing of rolls of sheet material or of rods and, being ductile, can easily be machined into various shapes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高性能永磁体的需求正在迅速增加,如风力涡轮机发电机和电动和混合动力汽车电机的应用。钐钴(Sm-Co)和钕铁硼(Nd-Fe-B)稀土磁体通常用于这种具有挑战性的应用。虽然稀土磁体是目前最好的永磁体,但它们往往很脆,会受到热冲击和腐蚀。此外,稀土开采与严重的环境退化和禁止能源使用有关。镍铁在陨石中被鉴定为化合物Tetrataenite,在数千年的时间里从高温相转变为低温磁相,具有与稀土磁体相当的磁性。该奖项使用量子力学计算开发镍铁基永磁体,以预测合金化的影响,并通过实验验证这些额外元素对这些材料的相变动力学和磁性能的影响。采用一种新颖的脉冲电加热方法来加速相变。新型镍铁磁体的开发使永磁体的生产成本降低,这对美国的经济和安全产生了影响。该项目吸引妇女和代表性不足的少数群体参与多学科研究活动,并开发了一个网站,提供简单的虚拟实验,向广大受众解释永磁体的磁性和材料科学,L10结构的化合物镍铁(NiFe)有可能以低成本取代稀土(RE)磁体。NiFe的磁各向异性能ku为1.3 × 106 J.m-3,饱和磁化强度m0 MS为1.59特斯拉,与Nd 2Fe 14 B相当,并且具有良好的耐腐蚀性。挑战在于二元L10化合物具有非常低的从高温面心立方(f.c.c.)在铸造时形成的约320 ℃的相,因此在稳定的温度下有序化非常缓慢。本计画结合量子力学计算与实验研究,设计出具有三元元素添加的L10结构镍铁磁铁。这些三元化合物潜在地具有显著更高的f.c.c.-到L10的转变温度和比二元NiFe更高的扩散率,但具有相似的饱和磁化强度。因此,L10相可以利用冷加工材料的电脉冲退火在更高的温度下在短的商业上可行的时间内产生,这也已经显示出显著加速NiFe中的再结晶。在商业上,镍铁可以通过连续电脉冲退火的板材卷或棒来制造,并且具有延展性,可以很容易地加工成各种形状。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Suppression of anti-phase boundary defects in Mn-Al-Ti permanent magnets
  • DOI:
    10.1016/j.actamat.2023.119646
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Thomas Keller;Dylan Barbagallo;Tushar Kanti Ghosh;Natalya Sheremetyeva;G. Hautier;Ian Baker
  • 通讯作者:
    Thomas Keller;Dylan Barbagallo;Tushar Kanti Ghosh;Natalya Sheremetyeva;G. Hautier;Ian Baker
The phase transformation behavior of Mn-Al rare-earth-free permanent magnets
  • DOI:
    10.1016/j.jmmm.2023.171331
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Thomas Keller;Dylan Barbagallo;Natalya Sheremetyeva;Tushar Kanti Gosh;Katherine S. Shanks;G. Hautier;Ian Baker
  • 通讯作者:
    Thomas Keller;Dylan Barbagallo;Natalya Sheremetyeva;Tushar Kanti Gosh;Katherine S. Shanks;G. Hautier;Ian Baker
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Baker其他文献

SiB3模式对作物区CO2通量的模拟研究
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    张庚军;卢立新;蒋玲梅;蒋磊;Ian Baker
  • 通讯作者:
    Ian Baker
Dynamic Observations of the Densification of Polar Firn Under Compression Using a Micro‐Computed Tomograph
使用微型计算机断层扫描仪动态观察压缩下极地云杉的致密化
Enhanced strength-ductility synergy in medium entropy alloy via phase selective precipitation
通过相选择性沉淀在中熵合金中增强强度-延展性协同作用
  • DOI:
    10.1016/j.ijplas.2024.104204
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    12.800
  • 作者:
    Weijin Cai;Qiang Long;Shenghan Lu;Kang Wang;Junyang He;Shiteng Zhao;Zhiping Xiong;Jun Hu;Wenzhen Xia;Ian Baker;Kefu Gan;Min Song;Zhangwei Wang
  • 通讯作者:
    Zhangwei Wang
The effect of Al/Ti ratio on the evolution of precipitates and their effects on mechanical properties for Nisub35/sub(CoCrFe)sub55/subAlsubx/subTisub10−x/sub high entropy alloys
  • DOI:
    10.1016/j.jallcom.2022.164291
  • 发表时间:
    2022-06-15
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Liyuan Liu;Yang Zhang;Guangchuan Wu;Yongzheng Yu;Yaxi Ma;Jingming Ma;Ian Baker;Zhongwu Zhang
  • 通讯作者:
    Zhongwu Zhang
SiB3对不同下垫面的模拟试验与验证
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    蒋玲梅;卢立新;邢伟坡;张立新;Ian Baker;张庚军;左菁颖
  • 通讯作者:
    左菁颖

Ian Baker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Baker', 18)}}的其他基金

REU Site: Materials Make the World, A Dartmouth College REU Site in Materials Science
REU 网站:Materials Make the World,达特茅斯学院 REU 材料科学网站
  • 批准号:
    2242514
  • 财政年份:
    2023
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Standard Grant
Observations and Micromechanical Modeling of the Behavior of Snow/Ice Lenses Under Load in Order to Understand Avalanche Nucleation
为了了解雪崩成核,对雪/冰透镜在负载下的行为进行观察和微机械建模
  • 批准号:
    2227842
  • 财政年份:
    2023
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Scanning Transmission Electron Microscope for Research in Northern New England
MRI:购买扫描透射电子显微镜用于新英格兰北部的研究
  • 批准号:
    2213198
  • 财政年份:
    2022
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Standard Grant
Equal Channel Angular Extrusion (ECAE) Processing of Tau-MnAl Magnets
Tau-MnAl 磁体的等通道角挤压 (ECAE) 加工
  • 批准号:
    1852529
  • 财政年份:
    2019
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Standard Grant
Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation
合作研究:杂质和应力状态对多晶冰变形的影响
  • 批准号:
    1851094
  • 财政年份:
    2019
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Standard Grant
Cryogenic Wear of Novel High-Entropy Alloys
新型高熵合金的低温磨损
  • 批准号:
    1758924
  • 财政年份:
    2018
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Standard Grant
Understanding the Deformation Behavior of Alumina-Forming Austenitic Stainless Steels
了解形成氧化铝的奥氏体不锈钢的变形行为
  • 批准号:
    1708091
  • 财政年份:
    2017
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Continuing Grant
Dynamic Observations of the Evolution of Firn
杉木演化的动态观测
  • 批准号:
    1603239
  • 财政年份:
    2016
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Standard Grant
Understanding Precipitation and the Mechanical Properties of Novel Laves Phase-Strengthened Austenitic Steels for Energy Applications
了解用于能源应用的新型 Laves 相强化奥氏体钢的析出和机械性能
  • 批准号:
    1206240
  • 财政年份:
    2012
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Standard Grant
The Effects of Soluble Impurities on the Flow and Fabric of Polycrystalline Ice
可溶杂质对多晶冰流动和结构的影响
  • 批准号:
    1141411
  • 财政年份:
    2012
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Standard Grant

相似国自然基金

“Lignin-first”策略下镁碱催化原生木质素定向氧化为小分子有机酸的机制研究
  • 批准号:
    21908075
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
  • 批准号:
    51778175
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

Predictions of Properties of Matter using Physics-Based Force Fields Derived from First Principles
使用源自第一原理的基于物理的力场预测物质的性质
  • 批准号:
    2313826
  • 财政年份:
    2023
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Continuing Grant
Deep Earth evolution constrained by elemental partitioning using first-principles calculations.and tungsten isotope secular variation
使用第一原理计算受元素分配约束的地球深部演化和钨同位素长期变化
  • 批准号:
    22H01327
  • 财政年份:
    2022
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
From nano-mechanics to materials design: using first principles data to engineer high-performance materials and systems.
从纳米力学到材料设计:使用第一原理数据来设计高性能材料和系统。
  • 批准号:
    RGPIN-2019-06313
  • 财政年份:
    2022
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Discovery Grants Program - Individual
Construction of material exploration system using automatic first-principles calculation and multi-objective Bayesian optimiziation
利用自动第一性原理计算和多目标贝叶斯优化构建材料探索系统
  • 批准号:
    21K14401
  • 财政年份:
    2021
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Hidden X: Using spatial and magnetic symmetries to guide first principles search of compounds with hidden quantum properties X
隐藏的 X:利用空间和磁对称性来指导具有隐藏量子特性 X 的化合物的第一性原理搜索
  • 批准号:
    2113922
  • 财政年份:
    2021
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Continuing Grant
From nano-mechanics to materials design: using first principles data to engineer high-performance materials and systems.
从纳米力学到材料设计:使用第一原理数据来设计高性能材料和系统。
  • 批准号:
    RGPIN-2019-06313
  • 财政年份:
    2021
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Discovery Grants Program - Individual
A study on the interface structure between photocatalyst and electrolyte using spectroscopic measurements and first-principles calculations
利用光谱测量和第一性原理计算研究光催化剂和电解质之间的界面结构
  • 批准号:
    20K14775
  • 财政年份:
    2020
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Gas element-vacancy complexes investigated by electron momentum distribution analysis using a combination of positron annihilation and first-principles calculations
结合正电子湮灭和第一性原理计算,通过电子动量分布分析研究气体元素-空位复合物
  • 批准号:
    20K03902
  • 财政年份:
    2020
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study for charge transfer reaction in Li-ion battery using first-principles calculation combined with implicit salvation model
第一性原理计算结合隐式拯救模型研究锂离子电池电荷转移反应
  • 批准号:
    20K15376
  • 财政年份:
    2020
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploring All-Solid-State Batteries using First-Principles Modelling: Effective Computational Strategies towards Better Batteries
使用第一原理建模探索全固态电池:实现更好电池的有效计算策略
  • 批准号:
    EP/T026138/1
  • 财政年份:
    2020
  • 资助金额:
    $ 51.27万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了