Exploring All-Solid-State Batteries using First-Principles Modelling: Effective Computational Strategies towards Better Batteries
使用第一原理建模探索全固态电池:实现更好电池的有效计算策略
基本信息
- 批准号:EP/T026138/1
- 负责人:
- 金额:$ 161.82万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Energy storage has a more central role in our society today than ever before and has become one of the greatest research challenges of our time. The UK's Department of Energy & Climate Change has committed to the green-house gas emission reduction of 80% by 2050 through the Climate Change Act and has recently announced an £246-million investment in energy storage R&D. Such moves are motivated by the necessity for the UK to benefit from what is a global transition to new energy sources and more effective storage. However, solving the limitations in the current battery technologies will be key in order for the UK to develop high-performance, sustainable energy storage with low environmental impact. Since the 1980s, rechargeable Lithium-ion batteries (LIBs) have pioneered clean and effective energy storage and revolutionised portable electronics. Similarly, LIBs can be the key technology for the development of electric vehicles and grid-scale storage of renewable energy. The upscaling of the LIBs is, however, not straightforward due to safety issues. Organic electrolyte solutions -commonly used in the conventional Li-ion batteries- are volatile, flammable and even explosive, potentially causing catastrophic failures, specifically when used in substantial amounts in multi-cell batteries to power energy-intensive applications. As we near the theoretical limits of conventional Li-ion batteries, there is an ever-growing need for next-generation battery technologies that can meet the stringent energy demand.By replacing the organic electrolyte solutions with solid equivalents, all solid-state batteries (ASSB) can not only mitigate these safety issues, but also provide superior battery performances due to their higher energy density. This renders ASSBs ideal for challenging applications in various industries, on a small (battery on a chip or sensor), medium (electric vehicles) to large scale (grid-level storage for renewables). Three major setbacks, however, still need to be addressed before ASSBs can be fully commercialised: (1) the limited performance of the current ASSB components compared to traditional battery ones; (2) chemical, electrochemical and mechanical incompatibilities between the solid electrolytes and electrodes; (3) globally limited Li reserves, increasing the battery unit costs whilst demands for Li-ion batteries are growing.The full potential of ASSBs as next-generation batteries can be unlocked by the discovery of new battery materials with superior features compared to current technology, such as higher energy densities, faster charge rates, safer operation, better component compatibility and lower prices. Based on lab-based trial-and-error, the experimental materials discovery can be both expensive and time consuming: a new material must be synthesised and stabilized in the lab before its efficiency as a battery component can be assessed. Computational modelling tools can help accelerate this trial-and-error process both by predicting novel materials from scratch and by providing computer-based experiments to characterize the novel materials, complementing the physical experiments.In this framework, the main goal of this project is to improve all-solid-state battery technology using a bottom-up approach by tackling these primary limitations at an atomic level using computational modelling. This goal will be achieved by addressing three objectives:(1) To discover novel ASSB materials with superior performance, namely new solid-state electrolytes and suitable electrodes for the Li-ion and beyond Li-ion (e.g. sodium and potassium) battery technologies.(2) To engineer better solid electrolyte-electrode interfaces within ASSBs to augment their mechanical and electrochemical stability.(3) To rationally design ultrathin film deposition strategies to coat ASSB components to augment their compatibility with each other.
储能在当今社会中的作用比以往任何时候都更加重要,并已成为我们这个时代最大的研究挑战之一。英国能源与气候变化部通过《气候变化法案》承诺到2050年将温室气体排放量减少80%,并于最近宣布投资2.46亿英镑用于储能研发。这些举措的动机是英国必须从全球向新能源和更有效的储存过渡中受益。然而,解决当前电池技术的局限性将是英国开发高性能、可持续、对环境影响小的储能技术的关键。自20世纪80年代以来,可充电锂离子电池(LIB)开创了清洁和有效的能量存储,并彻底改变了便携式电子产品。同样,LIB可以成为电动汽车和可再生能源电网规模存储发展的关键技术。然而,由于安全问题,LIB的升级并不简单。传统锂离子电池中常用的有机电解质溶液具有挥发性、易燃性,甚至爆炸性,可能导致灾难性故障,特别是当大量用于多芯电池为能源密集型应用提供动力时。随着传统锂离子电池的理论极限越来越接近,人们对下一代电池技术的需求也越来越大,以满足严格的能源需求。通过用固体等效物取代有机电解质溶液,全固态电池(ASSB)不仅可以缓解这些安全问题,而且由于其更高的能量密度,还可以提供上级电池性能。这使得ASSB非常适合各种行业中具有挑战性的应用,无论是小型(芯片或传感器上的电池),中型(电动汽车)还是大型(可再生能源的电网级存储)。然而,在ASSB完全商业化之前,仍需要解决三个主要挫折:(1)与传统电池相比,当前ASSB组件的性能有限;(2)固体电解质和电极之间的化学、电化学和机械不相容性;(3)全球锂储量有限,随着锂离子电池需求的增长,电池单位成本也在增加。ASSB的全部潜力将成为下一个-通过发现与当前技术相比具有上级特征的新电池材料,例如更高的能量密度、更快的充电速率、更安全的操作、更好的组件兼容性和更低的价格,可以解锁第二代电池。基于实验室的试错,实验材料的发现既昂贵又耗时:必须在实验室中合成并稳定新材料,然后才能评估其作为电池组件的效率。计算建模工具可以通过从头开始预测新材料,并通过提供基于计算机的实验来表征新材料,补充物理实验,来帮助加速这种试错过程。在这个框架内,该项目的主要目标是使用自下而上的方法改进全固态电池技术,通过使用计算建模在原子水平上解决这些主要限制。这一目标将通过解决三个目标来实现:(1)发现具有上级性能的新型ASSB材料,即新的固态电解质和适用于锂离子和超越锂离子(例如钠和钾)电池技术的电极。(2)在ASSB内设计更好的固体电解质-电极界面,以增强其机械和电化学稳定性。(3)合理设计ASSB组件的镀膜策略,以增强组件之间的兼容性。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational discovery of superior vanadium-niobate-based cathode materials for next-generation all-solid-state lithium-ion battery applications
用于下一代全固态锂离子电池应用的优质钒铌酸盐基正极材料的计算发现
- DOI:10.1039/d3ta08096j
- 发表时间:2024
- 期刊:
- 影响因子:11.9
- 作者:Chakraborty T
- 通讯作者:Chakraborty T
High-Throughput Area-Selective Spatial Atomic Layer Deposition of SiO 2 with Interleaved Small Molecule Inhibitors and Integrated Back-Etch Correction for Low Defectivity
具有交错小分子抑制剂和集成背蚀校正的 SiO 2 高通量区域选择性空间原子层沉积,以实现低缺陷率
- DOI:10.1002/adma.202301204
- 发表时间:2023
- 期刊:
- 影响因子:29.4
- 作者:Karasulu B
- 通讯作者:Karasulu B
Computational Investigation of Sodium Niobates as Electrolytes for Sodium All Solid-State Batteries
铌酸钠作为钠全固态电池电解质的计算研究
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fitkin A.
- 通讯作者:Fitkin A.
(Invited) Area-selective spatial ALD of SiO2 interleaved with back-etch corrections: Selectivity and surface inspection of non-growth area
(特邀)SiO2 的区域选择性空间 ALD 与回蚀校正交错:非生长区域的选择性和表面检测
- DOI:10.1149/ma2021-0121839mtgabs
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Mameli A
- 通讯作者:Mameli A
(Invited) Area-Selective Spatial Atomic Layer Deposition of Silicon-Based Materials
(特邀)硅基材料的区域选择性空间原子层沉积
- DOI:10.1149/ma2022-02311132mtgabs
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mameli A
- 通讯作者:Mameli A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bora Karasulu其他文献
Towards the implementation of atomic layer deposited In 2 O 3
实现原子层沉积In 2 O 3
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Y. Kuang;B. Macco;Bora Karasulu;C. Ande;P. Bronsveld;Verheijen;Y. Wu;W. Kessels;R. Schropp - 通讯作者:
R. Schropp
(Invited) Area-Selective Atomic Layer Deposition: Role of Surface Chemistry
(特邀)区域选择性原子层沉积:表面化学的作用
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. Mameli;Bora Karasulu;M. Verheijen;A. Mackus;W. Kessels;F. Roozeboom - 通讯作者:
F. Roozeboom
Reaction path analysis for demethylation process of histone tail lysine residues
组蛋白尾部赖氨酸残基去甲基化过程的反应路径分析
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Bora Karasulu;O. Keskin;B. Erman - 通讯作者:
B. Erman
Amine Oxidation Mediated by N-Methyltryptophan Oxidase: Computational Insights into the Mechanism, Role of Active-Site Residues, and Covalent Flavin Binding
N-甲基色氨酸氧化酶介导的胺氧化:对机制、活性位点残基的作用和共价黄素结合的计算见解
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Bora Karasulu;W. Thiel - 通讯作者:
W. Thiel
Bora Karasulu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Exploring the Efficiency and Sustainability of Green Hydrogen Production: Utilizing Solid State Electrocatalysts and 3D printed cells in Water Electro
探索绿色制氢的效率和可持续性:在水电解中利用固态电催化剂和 3D 打印电池
- 批准号:
2888382 - 财政年份:2023
- 资助金额:
$ 161.82万 - 项目类别:
Studentship
SHF: Small: Exploring and Enhancing Capabilities of Emerging Hybrid/Convertible Solid-State Drives
SHF:小型:探索和增强新兴混合/可转换固态硬盘的功能
- 批准号:
2413520 - 财政年份:2023
- 资助金额:
$ 161.82万 - 项目类别:
Standard Grant
SHF: Small: Exploring and Enhancing Capabilities of Emerging Hybrid/Convertible Solid-State Drives
SHF:小型:探索和增强新兴混合/可转换固态硬盘的功能
- 批准号:
2208317 - 财政年份:2022
- 资助金额:
$ 161.82万 - 项目类别:
Standard Grant
Petaherz-scale solid state physics exploring by attosecond high-harmonic-based ultrafast spectroscopy
基于阿秒高次谐波的超快光谱探索太赫兹尺度的固体物理
- 批准号:
20H05670 - 财政年份:2020
- 资助金额:
$ 161.82万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
CDS&E: D3SC: The Dark Reaction Project: A machine-learning approach to exploring structural diversity in solid state synthesis
CDS
- 批准号:
1928882 - 财政年份:2018
- 资助金额:
$ 161.82万 - 项目类别:
Standard Grant
Exploring Interfaces in Li-ion All-Solid-State Batteries
探索锂离子全固态电池中的接口
- 批准号:
407920685 - 财政年份:2018
- 资助金额:
$ 161.82万 - 项目类别:
Research Fellowships
Exploring a new solid-state ionics in hydrides containing hydride complexes with high hydrogen coordination
探索含有高氢配位氢化物配合物的氢化物中的新型固态离子
- 批准号:
17K19168 - 财政年份:2017
- 资助金额:
$ 161.82万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Exploring Cathode and Solid Electrolyte Materials for All-solid-state Battery Applications
探索全固态电池应用的正极和固体电解质材料
- 批准号:
1834544 - 财政年份:2017
- 资助金额:
$ 161.82万 - 项目类别:
Studentship
CDS&E: D3SC: The Dark Reaction Project: A machine-learning approach to exploring structural diversity in solid state synthesis
CDS
- 批准号:
1709351 - 财政年份:2017
- 资助金额:
$ 161.82万 - 项目类别:
Standard Grant
Solid-state chemistry for transition-metal oxides: Exploring for new materials with novel functionalities
过渡金属氧化物的固态化学:探索具有新颖功能的新材料
- 批准号:
EP/N029119/1 - 财政年份:2016
- 资助金额:
$ 161.82万 - 项目类别:
Research Grant