Robust Network-level Inference from Neuronal Data Underlying Behavior
从行为背后的神经元数据进行稳健的网络级推理
基本信息
- 批准号:2032649
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Individual neurons are highly unreliable computational units in isolation, due to their drastic trial-to-trial response variability. Yet, when they act together as a network, they result in robust brain function and precise behavioral outcomes. The advent of large-scale neural recording technologies, such as two-photon calcium imaging, has created a paradigm shift by enabling scientists and engineers to study the activity of large populations of neurons in order to decipher how they collectively encode information from the external world and distill them to elicit robust behavior. In order to fully utilize these data, computationally efficient and mathematically principled techniques for robust network-level inference are required. The research objective of this proposal is to develop such methodologies to infer network-level characteristics of ensemble neuronal activity from two-photon imaging data, and to apply these methods to large-scale recordings in order to reveal the computational principles that underlie sensory processing and behavior. The research approaches include: developing a robust framework for joint inference of the intrinsic and stimulus-driven correlations of neuronal activity, designing a functional taxonomy to characterize the relevance of neuronal activity to sensory processing and behavioral outcomes, and constructing an estimation framework for capturing the dynamics and functional relevance of higher-order synchronous neuronal activity. This project addresses several outstanding challenges faced by existing methodologies, including biased network characterization incurred by two-stage analysis pipelines, intermixing the contributions of exogenous and endogenous processes to collective neuronal activity, and studying sensory processing and behavioral elicitation as disjoint problems. By employing two-photon calcium imaging data from mice and zebrafish, the proposed modeling and estimation framework will be used to investigate several fundamental problems in systems neuroscience such as tonotopic diversity in the auditory cortex, interaction of sensory processing and decision-making, and visuo-motor coordination. The project is expected to impact technology by providing signal processing solutions to be used in neural control and neuromorphic systems. The research is also integrated with educational and outreach activities including high school level workshops, undergraduate involvement in research, and course development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
单个神经元是孤立的高度不可靠的计算单元,这是由于它们的剧烈的试验间响应变异性。然而,当它们作为一个网络一起行动时,它们会产生强大的大脑功能和精确的行为结果。大规模神经记录技术的出现,如双光子钙成像,通过使科学家和工程师能够研究大量神经元的活动,以破译它们如何共同编码来自外部世界的信息,并提取它们以引发强大的行为,创造了一个范式转变。为了充分利用这些数据,需要计算高效和数学原理的技术来进行鲁棒的网络级推理。本提案的研究目标是开发这样的方法,从双光子成像数据推断整体神经元活动的网络级特征,并将这些方法应用于大规模记录,以揭示感觉处理和行为的计算原理。研究方法包括:开发一个强大的框架,用于联合推断神经元活动的内在和刺激驱动的相关性,设计一个功能分类来表征神经元活动与感觉处理和行为结果的相关性,并构建一个估计框架,用于捕获高阶同步神经元活动的动态和功能相关性。该项目解决了现有方法所面临的几个突出挑战,包括两阶段分析管道引起的有偏见的网络表征,混合外源性和内源性过程对集体神经元活动的贡献,以及将感觉处理和行为诱导作为不相交问题进行研究。通过采用来自小鼠和斑马鱼的双光子钙成像数据,所提出的建模和估计框架将被用于研究系统神经科学中的几个基本问题,例如听觉皮层中的tonotopic多样性,感觉处理和决策的相互作用,以及视觉-运动协调。该项目预计将通过提供用于神经控制和神经形态系统的信号处理解决方案来影响技术。该研究还与教育和推广活动相结合,包括高中水平的研讨会,本科生参与研究和课程开发。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic Analysis of Higher-Order Coordination in Neuronal Assemblies via De-Sparsified Orthogonal Matching Pursuit
通过去稀疏正交匹配追踪对神经元组件中的高阶协调进行动态分析
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Mukherjee, Shoutik;Babadi, Behtash
- 通讯作者:Babadi, Behtash
Granger Causal Inference from Spiking Observations via Latent Variable Modeling
通过潜变量建模从尖峰观察中进行格兰杰因果推断
- DOI:10.1109/ieeeconf56349.2022.10051886
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Khosravi, Sahar;Rupasinghe, Anuththara;Babadi, Behtash
- 通讯作者:Babadi, Behtash
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Behtash Babadi其他文献
Behtash Babadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Behtash Babadi', 18)}}的其他基金
Multi-Domain Identification of Functional Network Dynamics at the Neuronal Scale
神经元尺度功能网络动力学的多域识别
- 批准号:
1807216 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Deciphering Brain Function Through Dynamic Sparse Signal Processing
职业:通过动态稀疏信号处理解读大脑功能
- 批准号:
1552946 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
丝氨酸/甘氨酸/一碳代谢网络(SGOC metabolic network)调控炎症性巨噬细胞活化及脓毒症病理发生的机制研究
- 批准号:81930042
- 批准年份:2019
- 资助金额:305 万元
- 项目类别:重点项目
多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
- 批准号:91418205
- 批准年份:2014
- 资助金额:170.0 万元
- 项目类别:重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
- 批准号:60673142
- 批准年份:2006
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
Constructing a circulative network of sustainable phosphorus management: multi-level analysis and scenario design among material, technology, and society
构建磷可持续管理循环网络:物质、技术、社会多层次分析与情景设计
- 批准号:
23K17085 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Targeting the Default Mode Network: A TMS-fMRI Study
针对默认模式网络:TMS-fMRI 研究
- 批准号:
10590968 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Targeting the Auditory Control Network with Auditory Control Enhancement (ACE) in Schizophrenia
通过听觉控制增强 (ACE) 治疗精神分裂症的听觉控制网络
- 批准号:
10593386 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN) Scientific Leadership Center
艾滋病毒/艾滋病干预青少年医学试验网络 (ATN) 科学领导中心
- 批准号:
10595899 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
A systems-level perspective to addressing health harming legal needs via a joint Health Equity Collective and MLP network approach"
通过健康公平集体和 MLP 网络联合方法,从系统层面视角解决危害健康的法律需求”
- 批准号:
10739710 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN)Scientific Leadership Center; ADMIN SUPPLEMENT
艾滋病毒/艾滋病干预青少年医学试验网络 (ATN) 科学领导中心;
- 批准号:
10855435 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
NetISAC: Design and performance analysis of network-level ISAC: More than Integration
NetISAC:网络级ISAC的设计和性能分析:不仅仅是集成
- 批准号:
EP/Y02785X/1 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Fellowship
Illumination Optical Communication and Power Line Communication integrated Non-orthogonal Code Multi-level Modulation Network
照明光通信与电力线通信一体化非正交码多级调制网络
- 批准号:
22K19770 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Combing resting state functional magnetic resonance imaging with chemogenetic modulation to characterize connectivity of the Salience Network
将静息态功能磁共振成像与化学遗传学调制相结合来表征显着网络的连接性
- 批准号:
10464079 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Developing methods for dynamic contact network parameterisation within individual-level models for infectious disease transmission.
开发传染病传播个体水平模型中动态接触网络参数化的方法。
- 批准号:
548001-2020 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Postgraduate Scholarships - Doctoral