EAGER: DECOMPOSING COVID-19 VIRUS USING THE DUAL ACTION OF MICROWAVES AND PLASMA
EAGER:利用微波和等离子体的双重作用分解 COVID-19 病毒
基本信息
- 批准号:2033907
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The medical-supply shortage during the COVID-19 pandemic has created an unprecedented need for disinfecting medical personal protective equipment (PPE). Microwaves and plasma can effectively inactivate microbial pathogens and may be used for disinfecting contaminated medical equipment. This research project presents an exploratory approach to address some of the challenges created by the current pandemic. The researchers will investigate the effectiveness of the dual action of microwaves and plasma in disinfecting PPE contaminated with enveloped viruses, such as the COVID-19, at low temperatures. If successful, this process will have the ability to decontaminate heat-sensitive materials (e.g., masks, gloves, and gowns) by subjecting them to microwave-assisted low-temperature plasma with controlled intensity and density to avoid compromising their structural integrity. The proposed disinfection approach is potentially transformative and may also inspire fundamental changes in how communities use and recycle certain objects, as well as address challenges beyond the current COVID-19 pandemic. For instance, the U.S. Centers for Disease Control and Prevention (CDC) estimates that each year healthcare-associated infections kill more people worldwide than other incidents such as AIDS, breast cancer, or car accidents. The outcomes of the proposed research will significantly contribute to alleviating this problem by presenting effective techniques for disinfecting medical equipment. Thus, it will have tremendous environmental and economic impacts to geographical locations with limited consistent access to fresh medical supplies, e.g., rural communities in the U.S. and other developing countries.This multidisciplinary research will analyze key parameters affecting microwave and plasma disinfection mechanisms of contaminated PPE at low and nondestructive temperatures. Numerical solutions for equations describing electromagnetic-wave and plasma interactions in an overmoded microwave cavity will be developed. These solutions will be used to design an experimental system to apply variable intensities of microwaves and low-temperature plasma to contaminated specimens. An optimized system will be built with high precision to analyze the parameters affecting the decontamination process. The effectiveness of the developed system in inactivating enveloped viruses, such as COVID-19, will be tested using influenza A viruses. The effective destruction of influenza A virus would guarantee the system's capability to destroy COVID-19. The microwave and plasma intensities and exposure time will be varied while the specimen's temperature, humidity in the device chamber, and the viability of the virus are being monitored. The aim is to determine the effective combination of microwave and plasma doses, exposure time, humidity, and temperature that can destroy the virus. The proposed approach has several advantages over conventional disinfection approaches using chemicals, including speed, convenience for repeated use, continuous availability, environmental friendliness, and safety. The research can potentially be extended to explore disinfecting objects contaminated with other pathogens such as fungal cells and bacteria, in addition to enveloped and non-enveloped viruses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在COVID-19大流行期间的医疗供应短缺使对医疗个人保护设备(PPE)进行消毒的前所未有。微波和血浆可以有效地使微生物病原体失活,可用于消毒受污染的医疗设备。该研究项目提出了一种探索方法,以应对当前大流行造成的一些挑战。研究人员将研究微波和等离子体在低温下被包膜病毒(例如Covid-19)污染的PPE的双重作用的有效性。如果成功的话,此过程将有能力通过使它们具有微波辅助的低温等离子体(以控制强度和密度为避免损害其结构完整性),使其对热敏感材料(例如面膜,手套和礼服)进行衰减。提出的消毒方法具有潜在的变革性,还可能激发社区如何使用和回收某些物体的根本变化,并应对当前Covid-19-19-19的大流行以外的挑战。例如,美国疾病控制与预防中心(CDC)估计,每年与艾滋病,乳腺癌或汽车事故等其他事件相比,每年与医疗保健相关的感染杀死的人数更多。拟议研究的结果将通过提出对医疗设备进行消毒的有效技术来大大减轻此问题。因此,它将对地理位置产生巨大的环境和经济影响,这些地理位置有限地获得新的医疗用品,例如,美国和其他发展中国家的农村社区。这项多学科研究将分析影响微波和血浆消毒机制低下和非污染性的PPE的关键参数。将开发出描述电磁波和等离子体相互作用过度移动的微波腔中的数值解。这些解决方案将用于设计实验系统,以将微波和低温等离子体的可变强度应用于受污染的标本。将建立一个优化的系统,以高精度来分析影响净化过程的参数。开发系统在灭活包膜病毒(例如Covid-19)中的有效性将使用流感A病毒测试。流感病毒的有效破坏将保证该系统破坏Covid-19的能力。当标本的温度,设备腔中的湿度以及病毒的可行性监测时,微波和血浆强度和暴露时间将变化。目的是确定微波和血浆剂量,暴露时间,湿度和温度的有效组合,可以破坏病毒。所提出的方法比使用化学药品的常规消毒方法具有多个优势,包括速度,可重复使用的便利性,持续可用性,环境友好性和安全性。该研究可能会扩展到探索被其他病原体(例如真菌细胞和细菌)污染的消毒物体,除了包裹和非发育的病毒外,该奖项反映了NSF的法定任务,并被认为是通过基金会的智力功能和更广泛影响的评估来评估Criteria的评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samir El-Ghazaly其他文献
Samir El-Ghazaly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samir El-Ghazaly', 18)}}的其他基金
Conference: USA-Africa Workshop on Communications and Microwave Emerging Technologies
会议:美国-非洲通信和微波新兴技术研讨会
- 批准号:
2301333 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
I-Corps: Optimized mm-Wave Transistors for 5G Applications
I-Corps:针对 5G 应用的优化毫米波晶体管
- 批准号:
2126041 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Planning IUCRC at University of Arkansas: Center for High-Frequency Electronics And Circuits for Communication Systems (CHECCS)
阿肯色大学规划 IUCRC:通信系统高频电子和电路中心 (CHECCS)
- 批准号:
1841492 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SAPPHIRE BASED INTEGRATED MICROWAVE PHOTONICS
EAGER:基于蓝宝石的集成微波光子学
- 批准号:
1745143 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Analysis of Superconducting Microwave Transmission Lines (REU SUPPLEMENT)
超导微波传输线分析(REU 补充)
- 批准号:
9108933 - 财政年份:1991
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
氧化/还原助剂修饰CdS用于光催化分解H2S制氢的超快光物理机理研究
- 批准号:22311530118
- 批准年份:2023
- 资助金额:37 万元
- 项目类别:国际(地区)合作与交流项目
泥质粉砂水合物分解时粘土运移特征与储层渗透率损伤研究
- 批准号:42306236
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
紫外辐射对凋落物分解及凋落物碳转化为土壤有机碳的影响机制研究
- 批准号:32371630
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于深度学习和恰当正交分解的降阶时空有限元法研究
- 批准号:12301494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
船机排温条件下等离子体与催化剂协同的氨分解制氢机制研究
- 批准号:52301382
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
COVID-19のオープンデータを用いた時系列解析による政策等の影響分析と教育化
通过使用有关 COVID-19 的开放数据的时间序列分析,对政策等的影响进行分析和教育
- 批准号:
22K11946 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
白血球粒度分布分析によるCOVID-19の免疫応答ダイナミクスの解明
通过白细胞粒径分布分析阐明 COVID-19 的免疫反应动态
- 批准号:
22K07454 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
内分泌視点から捉えたCOVID-19罹患後の倦怠感の機序とその解明
从内分泌角度解读COVID-19感染后疲劳的机制和阐明
- 批准号:
22K20927 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
感情分析の観点から信頼性が低い情報が拡散されるメカニズムを解析するための研究
从情感分析角度分析不可靠信息传播机制的研究
- 批准号:
22K18152 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ウイルス感染症後遺症による神経炎症の分子機構の解明
阐明病毒感染后遗症引起神经炎症的分子机制
- 批准号:
22K16588 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists