Adaptive dynamic coordination of damping controllers through deep reinforcement and transfer learning

通过深度强化和迁移学习实现阻尼控制器的自适应动态协调

基本信息

  • 批准号:
    2033910
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

In the last decades, global environmental pollution, concerns with fossil fuel reserves, and advances in technology have led to actions that are transforming the power grid. Over the years, several states have adopted renewable portfolio standards and goals to increase electricity production from renewable sources such as solar and wind power. This has resulted in new grid behaviors in response to disturbances in the system. This phenomenon has created concerns about an increased risk of sustained oscillations that can cause poor electric service quality and can even lead to blackouts. A search for new effective control systems has created a new breed of controllers. Specifically, the design of new controllers has been studied for wind turbines, energy storage systems, and other emergent components. However, with this massive presence of non-standard controllers and the existing controllers in conventional power plants, there is an urgent need for coordination that would enhance the combined effect of all the controllers to avoid conflicting interactions among them. Presently, there is no coordination of this magnitude in either actual systems or theoretical studies. The problem is challenging and it requires adaptability as the grid is permanently changing during its operation. This project will add intelligence to the grid, and through a real-time adaptable coordination, it will diminish possibilities of blackouts by mitigating the unwanted oscillations in the system. The proposed adaptive controller coordination has tremendous potential to enable the current and forthcoming power grid with superior dynamic performance and stability. This research will help increase awareness of the importance of the power grid for our nation including the benefits and challenges of renewable energy. Pre-college students and teachers will be exposed to engineering principles and practical applications through participation in outreach programs. This project will transform the conventional notion of controller coordination to make it suitable for real-time control as well as adaptive to disturbances and operating conditions. This project will seek controller coordinating signals that will minimize the system oscillation energy. The physical concept of oscillation energy not only allows avoiding the use of arbitrary objective functions, but also serves as a mechanism to weight the importance of the different oscillation modes without having to target in advance the most critical ones. As preliminary work, the PIs have derived an analytical procedure for on/off controller coordination using the time integral of the oscillation energy and its sensitivity with respect to the controller gains. As this procedure is based on the linearization of the state-space model, matrices, eigenvalues, and sensitivities must be either calculated promptly after a disturbance or collected previously off-line for the most representative operating points and disturbances. To overcome this drawback, and to make the coordination feasible and practical, a deep reinforcement learning (DRL) framework is proposed that would make the coordination not only adaptive but also more effective. In this regard, this DRL framework will allow exploring both discrete and continuous coordinating signals. While a discrete signal can be seen as a controller's on/off mechanism, a continuous signal can be understood as a quantity that can scale up/down the controller gains within a specified range. Furthermore, as the system can be subjected to extreme disturbances, this project proposes the use of transfer learning so the DRL training can be transferred even if there are topological changes or severe operational changes such as generator outages or load rejections.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年里,全球环境污染、对化石燃料储量的担忧以及技术的进步导致了电网转型的行动。多年来,一些州已经采用了可再生能源组合标准和目标,以增加太阳能和风能等可再生能源的发电量。这导致了新的网格行为,以响应系统中的干扰。这种现象引起了人们对持续振荡风险增加的担忧,持续振荡可能导致电力服务质量差,甚至可能导致停电。 对新的有效控制系统的研究已经创造了一种新的控制器。具体而言,新的控制器的设计已经研究了风力涡轮机,储能系统和其他紧急组件。然而,随着非标准控制器和传统发电厂中现有控制器的大量存在,迫切需要协调,以增强所有控制器的组合效果,以避免它们之间的相互冲突。目前,在实际系统或理论研究中还没有这种量级的协调。这个问题是具有挑战性的,它需要适应性,因为电网在运行过程中会不断变化。该项目将为电网增加智能,并通过实时适应性协调,通过减轻系统中不必要的振荡来减少停电的可能性。所提出的自适应控制器协调具有巨大的潜力,使当前和未来的电网具有上级动态性能和稳定性。这项研究将有助于提高人们对电网对我们国家的重要性的认识,包括可再生能源的好处和挑战。大学预科学生和教师将通过参与外展计划接触工程原理和实际应用。该项目将改变传统的控制器协调的概念,使其适用于实时控制以及自适应干扰和操作条件。该项目将寻求控制器协调信号,以最大限度地减少系统振荡能量。振荡能量的物理概念不仅允许避免使用任意的目标函数,而且还用作加权不同振荡模式的重要性的机制,而不必提前瞄准最关键的振荡模式。作为初步工作,PI已经推导出一个分析程序,用于开/关控制器协调使用的时间积分的振荡能量和它的灵敏度相对于控制器增益。由于该过程基于状态空间模型的线性化,因此必须在扰动后立即计算矩阵、特征值和灵敏度,或者预先离线收集最具代表性的操作点和扰动。为了克服这个缺点,并使协调可行和实用,提出了一个深度强化学习(DRL)框架,使协调不仅自适应,而且更有效。在这方面,该DRL框架将允许探索离散和连续的协调信号。虽然离散信号可以被视为控制器的开/关机制,但连续信号可以被理解为可以在指定范围内按比例增加/减少控制器增益的量。此外,由于系统可能会受到极端干扰,因此该项目建议使用迁移学习,即使发生拓扑变化或严重的操作变化(如发电机停机或负载拒绝),DRL培训也可以迁移。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Branching Dueling Q-Network-Based Online Scheduling of a Microgrid With Distributed Energy Storage Systems
  • DOI:
    10.1109/tsg.2021.3103405
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    H. Shuai;F. Li;Héctor Pulgar-Painemal;Yaosuo Xue
  • 通讯作者:
    H. Shuai;F. Li;Héctor Pulgar-Painemal;Yaosuo Xue
Multi-task deep reinforcement learning for intelligent multi-zone residential HVAC control
  • DOI:
    10.1016/j.epsr.2020.106959
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yan Du;F. Li;J. Munk;Kuldeep R. Kurte;O. Kotevska;Kadir Amasyali;H. Zandi
  • 通讯作者:
    Yan Du;F. Li;J. Munk;Kuldeep R. Kurte;O. Kotevska;Kadir Amasyali;H. Zandi
Data-driven adaptive dynamic coordination of damping controllers
数据驱动的阻尼控制器自适应动态协调
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Zelaya-Arrazabal;J. Liu;J. Zhao;H. Pulgar-Painemal;H. Silva-Saravia
  • 通讯作者:
    H. Silva-Saravia
Supplementary Primary Frequency Control Through Deep Reinforcement Learning Algorithms
通过深度强化学习算法补充主频控制
  • DOI:
    10.1109/naps58826.2023.10318681
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zelaya-Arrazabal, Francisco;Thacker, Timothy;Pulgar-Painemal, Héctor;Guo, Zhenping
  • 通讯作者:
    Guo, Zhenping
Post-storm repair crew dispatch for distribution grid restoration using stochastic Monte Carlo tree search and deep neural networks
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hector Pulgar其他文献

Hector Pulgar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hector Pulgar', 18)}}的其他基金

CAREER: Towards Enhanced Grid Robustness: Augmenting Grid-Regulating Capabilities Through Discrete Controls on Emerging Power Technologies
职业:增强电网稳健性:通过对新兴电力技术的离散控制增强电网调节能力
  • 批准号:
    2044629
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Strengthening power system dynamic operation with the advent of increased renewable generation: Location and control of fast energy storage systems
随着可再生能源发电量的增加,加强电力系统的动态运行:快速储能系统的定位和控制
  • 批准号:
    1509114
  • 财政年份:
    2015
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
静动态损伤问题的基面力元法及其在再生混凝土材料细观损伤分析中的应用
  • 批准号:
    11172015
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
  • 批准号:
    51008191
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
美洲大蠊药材养殖及加工过程中化学成分动态变化与生物活性的相关性研究
  • 批准号:
    81060329
  • 批准年份:
    2010
  • 资助金额:
    26.0 万元
  • 项目类别:
    地区科学基金项目
星系恒星与气体的动力学演化
  • 批准号:
    11073025
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
"锁住"的金属中心手性-手性笼络合物的动态CD光谱研究与应用开发
  • 批准号:
    20973136
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
  • 批准号:
    50876120
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
大规模动态网络环境中协同组操作一致性维护算法的正确性证明及其验证的研究
  • 批准号:
    60803118
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dynamic Multi-state Living Coordination Polymerization for Next Generation Polyolefins
下一代聚烯烃的动态多态活性配位聚合
  • 批准号:
    2247554
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
CAREER: Toward Autonomous Decision Making and Coordination in Intelligent Unmanned Aerial Vehicles' Operation in Dynamic Uncertain Remote Areas
职业:在动态不确定的偏远地区实现智能无人机操作的自主决策和协调
  • 批准号:
    2232048
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Smart Needle with Intelligent Robotic Control for Prostate Brachytherapy
用于前列腺近距离治疗的智能机器人控制智能针
  • 批准号:
    10627946
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
Optimizing Intensive Care Unit Staffing in the United States
优化美国重症监护病房的人员配置
  • 批准号:
    10611850
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
Dynamic Coordination, Runs, and Efficient Policy Design
动态协调、运行和高效的政策设计
  • 批准号:
    ES/T003758/1
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Grant
CAREER: Toward Autonomous Decision Making and Coordination in Intelligent Unmanned Aerial Vehicles' Operation in Dynamic Uncertain Remote Areas
职业:在动态不确定的偏远地区实现智能无人机操作的自主决策和协调
  • 批准号:
    2034218
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Participatory System Dynamics vs Audit and Feedback: A Cluster Randomized Trial of Mechanisms of Implementation Change to Expand Reach of Evidence-based Addiction and Mental Health Care
参与式系统动态与审计和反馈:实施变更机制的集群随机试验,以扩大循证成瘾和心理健康保健的范围
  • 批准号:
    10538553
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
Research and development of autonomous distributed co-evolutionary AI infrastructure technology based on dynamic coordination between cloud-side and edge-side devices
基于云端与边缘设备动态协调的自主分布式协同进化AI基础设施技术研发
  • 批准号:
    19H04099
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Switching of Orbital Angular Momentum Using the Dynamic Bond
利用动态键切换轨道角动量
  • 批准号:
    18K14244
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of dynamic balance task for clarify the structure of coordination ability
开发动态平衡任务以明确协调能力的结构
  • 批准号:
    18K10983
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了