NSF2026: EAGER:Cues and actions for efficient nonverbal human-robot communication
NSF2026:EAGER:高效非语言人机交流的提示和动作
基本信息
- 批准号:2033918
- 负责人:
- 金额:$ 13.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A large part of human group communication takes place nonverbally. People follow gaze, avoid collisions, search and rescue in teams, all without speaking to each other. In this respect, actions, rather than words, enable rapid two-way communication of information without interfering with the task at hand or posing additional mental burden required to understand speech and text. Integrating human-machine intelligence would benefit from a similar natural and fluid communication between humans and machines. This project develops novel methods to advance human-robot intelligence through a series of experimental studies and rigorous mathematical analysis. The experiments involve tasks designed to exploit the strengths of robots and humans; robots are able to repetitively explore a large environment and humans have better awareness of the situation and domain expertise. The experimental tasks are inspired by the difficult problem of monitoring the vast number of invasive aquatic species threatening the Great Lakes region. The mathematical analysis is aimed at discovering effective robot actions in response to changes in human cognitive load, and efficient nonverbal interaction strategies between humans and robots. Research results from this work will raise public awareness of invasive aquatic species in the Great Lakes region and present human-robot teaming as a prominent opportunity to solve large-scale problems. Engineering students involved in the project will contribute to the new generation of scientific workforce who can straddle boundaries across multiple disciplines such as robotics, computer science, and ecology.This research aims to enable tighter integration of human-robot intelligence by teasing out components of efficient nonverbal human-robot communication. These include: (i) level of engagement of the robotic swarm as a function of human cognitive load, (ii) recruitment strategies used by humans as they team up with the robotic swarm to map a complex dynamic environment, (iii) perception of robot swarming patterns by humans, and (iv) indirect indicators of human cognitive load that can enable faster interpretation in the wild. Towards this, experimental conditions will highlight the dependence of team performance on how robots respond to the cognitive load experienced by the human participants. Experiments will be conducted in virtual reality to enable realization of large robot swarms without the accompanying design and sensor programming challenges. Scalability of swarm robotics will be preserved by building all environmental sensing and interaction strategies upon local interaction rules. Information-theoretic measures of directional information flow will be used to quantify human perception of swarm patterns and isolate movement correlates of cognitive load. This project has the support of the Human-Centered-Computing Program in the IIS Division in the CISE Directorate, and the NSF 2026 Fund Program in the Office of Integrated Activities. The project enriches, extends, and explores the NSF 2026 Idea Machine Winning Entry “Integrated Human-Machine Intelligence”.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大部分的人际交流都是通过非语言的方式进行的。人们跟随目光,避免碰撞,团队搜索和救援,所有这些都没有互相说话。在这方面,行动,而不是言语,能够实现快速的双向信息交流,而不会干扰手头的任务,也不会造成理解语音和文本所需的额外心理负担。整合人机智能将受益于人类和机器之间类似的自然和流畅的通信。该项目通过一系列实验研究和严格的数学分析,开发新的方法来提高人机智能。这些实验涉及旨在利用机器人和人类优势的任务;机器人能够重复探索大环境,而人类对情况和领域专业知识有更好的认识。实验任务的灵感来自于监测威胁五大湖地区的大量入侵水生物种的难题。数学分析的目的是发现有效的机器人行动,以应对人类认知负荷的变化,以及人类和机器人之间的有效的非语言交互策略。这项工作的研究成果将提高公众对五大湖地区入侵水生物种的认识,并将人机合作作为解决大规模问题的重要机会。参与该项目的工程专业学生将为新一代的科学工作者做出贡献,他们可以跨越机器人技术、计算机科学和生态学等多个学科的界限。该研究旨在通过梳理高效的非语言人机沟通组件,实现人机智能的更紧密集成。其中包括:(i)作为人类认知负荷的函数的机器人群体的参与水平,(ii)当人类与机器人群体合作以绘制复杂的动态环境时人类使用的招募策略,(iii)人类对机器人群集模式的感知,以及(iv)可以在野外实现更快解释的人类认知负荷的间接指标。为此,实验条件将突出团队绩效对机器人如何响应人类参与者所经历的认知负荷的依赖性。实验将在虚拟现实中进行,以实现大型机器人群,而无需伴随设计和传感器编程的挑战。群体机器人的可扩展性将通过建立所有的环境感知和互动策略本地互动规则。定向信息流的信息理论测量将被用来量化人类对群体模式的感知,并隔离认知负荷的运动相关性。 该项目得到了CISE理事会IIS部门的以人为中心的计算计划和综合活动办公室的NSF 2026基金计划的支持。 该项目丰富、扩展和探索了NSF 2026 Idea Machine获奖作品“集成人机智能”。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measurement and Analysis of Cognitive Load Associated with Moving Object Classification in Underwater Environments
水下环境中与运动物体分类相关的认知负荷的测量和分析
- DOI:10.1080/10447318.2023.2171275
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bhattacharya, Arunim;Butail, Sachit
- 通讯作者:Butail, Sachit
Information-Based Control of Robots in Search-and-Rescue Missions With Human Prior Knowledge
- DOI:10.1109/thms.2021.3113642
- 发表时间:2021-11-16
- 期刊:
- 影响因子:3.6
- 作者:Krzysiak, Rafal;Butail, Sachit
- 通讯作者:Butail, Sachit
Designing a Virtual Reality Testbed for Direct Human-Swarm Interaction in Aquatic Species Monitoring
设计用于水生物种监测中人-群直接交互的虚拟现实测试台
- DOI:10.1016/j.ifacol.2022.11.200
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bhattacharya, Arunim;Butail, Sachit
- 通讯作者:Butail, Sachit
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sachit Butail其他文献
Sachit Butail的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sachit Butail', 18)}}的其他基金
Collaborative Research: The Role of Stress in Human Crowd Dynamics during Emergency Situations
合作研究:紧急情况下压力在人群动态中的作用
- 批准号:
2308755 - 财政年份:2023
- 资助金额:
$ 13.87万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Agent-based Modeling Toward Effective Testing and Contact-tracing During the COVID-19 Pandemic
快速/协作研究:基于代理的建模,以在 COVID-19 大流行期间实现有效的测试和接触者追踪
- 批准号:
2027988 - 财政年份:2020
- 资助金额:
$ 13.87万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 13.87万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 13.87万 - 项目类别:
Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
- 批准号:
2348836 - 财政年份:2024
- 资助金额:
$ 13.87万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 13.87万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 13.87万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 13.87万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 13.87万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 13.87万 - 项目类别:
Standard Grant
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
- 批准号:
2345734 - 财政年份:2024
- 资助金额:
$ 13.87万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 13.87万 - 项目类别:
Standard Grant