NRI: FND: Extending Autonomy in Seemingly Sensory-Denied Environments Applied to Underwater Robots

NRI:FND:在看似无感知的环境中扩展自主性,应用于水下机器人

基本信息

  • 批准号:
    2024733
  • 负责人:
  • 金额:
    $ 60.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Many coastal communities in the U.S. are densely populated and highly urbanized, presenting critical locations for assessing the effects of urbanization and climate on the coastal ocean's physical and biological states. Effective study requires long-term, persistent ocean monitoring utilizing autonomous vehicles to enable a deeper understanding of these processes. This project aims to overcome the theoretical and technical challenges to enable heterogeneous groups of autonomous vehicles to perform intelligent sampling in dynamic and sensory-denied environments, with a focus on the maritime domain. The success of these endeavors will improve weather forecasting, underwater transport dynamics understanding, and modeling and prediction of various physical phenomena in aquatic environments. The team of researchers will engage underrepresented groups in STEM in the research program by leveraging a diverse student population at Florida International University (a minority-serving institution). The educational activities aim to positively impact a generation of young technologists and equip them with a strong interdisciplinary skillset.This project aims to advance robotics and ocean sciences by creating novel mapping, localization, navigation, and robot-human communication techniques that will enable autonomous aquatic vehicles to sample intelligently in sensor-denied, dynamic environments. The research activities are divided into four tasks. The first task develops 3D representations of aquatic environments and features from physical and biological models, bathymetry, and in situ samples that are devoid of world reference models. The second task develops a new framework for dynamic mapping and localization for aquatic robots to perform targeted sampling within dynamically evolving aquatic features. Task 3 develops map representations that are both human-friendly and robot-digestible to facilitate knowledge transfer with low data exchange. Task 4 includes the experimental validation of the developed approaches using simulation, laboratory experiments, and full-scale field trials. The planned novel frameworks to map representation, localization, and navigation can find applications in mobile robot systems beyond aquatic vehicles such as subterranean and space robotics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国的许多沿海社区人口稠密,高度城市化,为评估城市化和气候对沿海海洋的物理和生物状态的影响提供了关键位置。有效的研究需要利用自动驾驶车辆进行长期、持续的海洋监测,以更深入地了解这些过程。该项目旨在克服理论和技术挑战,使不同的自动驾驶车辆组能够在动态和感知拒绝的环境中执行智能采样,重点是海洋领域。 这些努力的成功将改善天气预报,水下运输动力学的理解,以及水生环境中各种物理现象的建模和预测。研究人员团队将通过利用佛罗里达国际大学(少数民族服务机构)的多元化学生群体,在STEM研究项目中吸引代表性不足的群体。教育活动旨在积极影响一代年轻的技术人员,并使他们具备强大的跨学科技能。该项目旨在通过创造新的测绘,定位,导航和机器人-人类通信技术,使自主水上车辆能够在传感器拒绝的动态环境中智能采样,从而推动机器人和海洋科学。研究活动分为四项任务。第一个任务是从物理和生物模型、水深测量和缺乏世界参考模型的原位样本中开发水生环境和特征的3D表示。第二个任务开发了一个新的框架,动态映射和本地化的水生机器人进行有针对性的采样动态演变的水生功能。任务3开发了对人类友好且机器人可消化的地图表示,以促进低数据交换的知识转移。任务4包括使用模拟、实验室实验和全尺寸现场试验对所开发的方法进行实验验证。计划中的地图表示,定位和导航的新框架可以在移动的机器人系统中找到应用,而不仅仅是水下车辆,如地下和太空机器人。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Localization in Seemingly Sensory-Denied Environments through Spatio-Temporal Varying Fields
通过时空变化场在看似感官被拒绝的环境中进行定位
Combining Remote and In-situ Sensing for Persistent Monitoring of Water Quality
结合遥感和现场传感来持续监测水质
  • DOI:
    10.1109/oceanschennai45887.2022.9775339
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rojas, Cesar A.;Reis, Gregory M.;Albayrak, Arif R.;Osmanoglu, Batuhan;Bobadilla, Leonardo;Smith, Ryan N.
  • 通讯作者:
    Smith, Ryan N.
Towards Metaverse: Utilizing Extended Reality and Digital Twins to Control Robotic Systems
迈向元宇宙:利用扩展现实和数字孪生来控制机器人系统
  • DOI:
    10.3390/act12060219
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Kaarlela, Tero;Pitkäaho, Tomi;Pieskä, Sakari;Padrão, Paulo;Bobadilla, Leonardo;Tikanmäki, Matti;Haavisto, Timo;Blanco Bataller, Víctor;Laivuori, Niko;Luimula, Mika
  • 通讯作者:
    Luimula, Mika
Multi-Robot Information Gathering Subject to Resource Constraints
受资源限制的多机器人信息采集
Combining Remote and In-situ Sensing for Autonomous Underwater Vehicle Localization and Navigation
结合远程和原位传感进行自主水下航行器定位和导航
  • DOI:
    10.1109/oceans47191.2022.9977208
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rojas, Cesar A.;Padrao, Paulo V.;Fuentes, Jose E.;Albayrak, Arif R.;Osmanoglu, Batuhan;Bobadilla, Leonardo
  • 通讯作者:
    Bobadilla, Leonardo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonardo Bobadilla其他文献

Characterizing and Predicting Catalytic Residues in Enzyme Active Sites Based on Local Properties: A Machine Learning Approach
基于局部特性表征和预测酶活性位点中的催化残基:一种机器学习方法
An Automated Methodology for Worker Path Generation and Safety Assessment in Construction Projects
建筑项目中工人路径生成和安全评估的自动化方法
A meta-analytic review of the relationship between empathy and oxytocin: Implications for application in psychopathy research
关于共情与催产素关系的元分析综述:对精神病学研究应用的启示
  • DOI:
    10.1016/j.avb.2023.101828
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Nicole Stark;Leonardo Bobadilla;Paul Michael;Sarina Saturn;Matt Portner
  • 通讯作者:
    Matt Portner
Minimalist multiple target tracking using directional sensor beams
使用定向传感器光束进行极简多目标跟踪
Feedback Motion Planning for Long-Range Autonomous Underwater Vehicles
远程自主水下航行器的反馈运动规划
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Opeyemi S. Orioke;Tauhidul Alam;J. Quinn;Ramneek Kaur;Wesam H. Alsabban;Leonardo Bobadilla;Ryan N. Smith
  • 通讯作者:
    Ryan N. Smith

Leonardo Bobadilla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonardo Bobadilla', 18)}}的其他基金

CC* Storage: EnviStor: A Repository for Supporting Collaborative Interdisciplinary Research on South Florida's Built and Natural Environments
CC* 存储:EnviStor:支持南佛罗里达州建筑和自然环境跨学科协作研究的存储库
  • 批准号:
    2322308
  • 财政年份:
    2023
  • 资助金额:
    $ 60.56万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Foundations of Secure Multi-Robot Computation
协作研究:EAGER:安全多机器人计算的基础
  • 批准号:
    2034123
  • 财政年份:
    2020
  • 资助金额:
    $ 60.56万
  • 项目类别:
    Standard Grant

相似国自然基金

Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
  • 批准号:
    31670112
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
  • 批准号:
    MR/Y004000/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.56万
  • 项目类别:
    Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 60.56万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
  • 批准号:
    2311967
  • 财政年份:
    2022
  • 资助金额:
    $ 60.56万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024882
  • 财政年份:
    2021
  • 资助金额:
    $ 60.56万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024646
  • 财政年份:
    2021
  • 资助金额:
    $ 60.56万
  • 项目类别:
    Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
  • 批准号:
    2024792
  • 财政年份:
    2021
  • 资助金额:
    $ 60.56万
  • 项目类别:
    Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
  • 批准号:
    2024670
  • 财政年份:
    2021
  • 资助金额:
    $ 60.56万
  • 项目类别:
    Standard Grant
NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
  • 批准号:
    2024409
  • 财政年份:
    2020
  • 资助金额:
    $ 60.56万
  • 项目类别:
    Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
  • 批准号:
    2024435
  • 财政年份:
    2020
  • 资助金额:
    $ 60.56万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
  • 批准号:
    2024615
  • 财政年份:
    2020
  • 资助金额:
    $ 60.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了