Collaborative Research: SCH: Fair Federated Representation Learning for Breast Cancer Risk Scoring

合作研究:SCH:乳腺癌风险评分的公平联合表示学习

基本信息

  • 批准号:
    2205289
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

With the availability of electronic health records (EHRs) in hospitals and clinics, powerful machine learning models can be developed to support precision population health and clinical decision-making tasks such as disease detection, outcome prediction, and treatment recommendation. This project creates a machine learning framework for training models across hospitals and new tools for incorporating fairness into distributed machine learning. The project will embed these algorithmic innovations to evaluate their applicability to real-world precision population health with a primary focus on addressing screening and treatment disparities in breast cancer, along with additional evaluation for various healthcare applications. This project will conclude with collaborative development and deployment across multiple academic and medical institutions and will include curriculum development on fairness in machine learning and federated machine learning. This project also plans to involve participation by graduate students from underrepresented groups.This project will focus on representation learning approaches for training EHR models, where embedding vectors can be trained with deep learning models to represent clinical concepts (e.g., diagnoses and medications) and patient data. The resulting embedding vectors can be input to the downstream applications, such as breast cancer risk scoring. This project creates a transformative new direction for addressing fairness in machine learning for healthcare by addressing the challenges of mitigating model and data biases. The first challenge is modeling bias, as most representation learning algorithms in healthcare do not consider any fairness measures, which can lead to biased embeddings. To this end, this project develops a fair representation learning algorithm that can be adapted to various fairness metrics. The second challenge is data bias, as the distributed nature of the data limits both the downstream equity and generalization performance of the resulting embedding vectors. This project addresses data bias using a new fair federated representation learning framework to learn representations that satisfy fairness criteria by training jointly across multiple sites without sharing patient data. In addition to developing the algorithmic and theoretical frameworks for these directions, this project will also build and release open software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着医院和诊所中电子健康记录(EHR)的可用性,可以开发强大的机器学习模型来支持精确的人群健康和临床决策任务,如疾病检测,结果预测和治疗建议。该项目创建了一个用于跨医院训练模型的机器学习框架,以及将公平性纳入分布式机器学习的新工具。该项目将嵌入这些算法创新,以评估其对现实世界精确人群健康的适用性,主要关注乳腺癌筛查和治疗差异,沿着对各种医疗保健应用的额外评估。该项目将以跨多个学术和医疗机构的协作开发和部署结束,并将包括关于机器学习和联合机器学习公平性的课程开发。该项目还计划让来自代表性不足群体的研究生参与。该项目将专注于用于训练EHR模型的表示学习方法,其中嵌入向量可以使用深度学习模型进行训练以表示临床概念(例如,诊断和药物)和患者数据。得到的嵌入向量可以输入到下游应用程序,例如乳腺癌风险评分。该项目通过解决减轻模型和数据偏差的挑战,为解决医疗保健机器学习的公平性创造了一个变革性的新方向。第一个挑战是建模偏差,因为医疗保健中的大多数表示学习算法不考虑任何公平性度量,这可能导致有偏见的嵌入。为此,该项目开发了一种公平表示学习算法,可以适应各种公平性度量。第二个挑战是数据偏差,因为数据的分布式性质限制了所得到的嵌入向量的下游公平性和泛化性能。该项目使用新的公平联邦表示学习框架来解决数据偏差问题,通过在多个站点之间联合训练来学习满足公平标准的表示,而无需共享患者数据。除了为这些方向开发算法和理论框架外,该项目还将构建和发布开放软件。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jimeng Sun其他文献

Mining large graphs and streams using matrix and tensor tools
使用矩阵和张量工具挖掘大型图和流
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Faloutsos;T. Kolda;Jimeng Sun
  • 通讯作者:
    Jimeng Sun
A perspective for adapting generalist AI to specialized medical AI applications and their challenges
将通用人工智能应用于专业医疗人工智能应用的视角及其挑战
  • DOI:
    10.1038/s41746-025-01789-7
  • 发表时间:
    2025-07-11
  • 期刊:
  • 影响因子:
    15.100
  • 作者:
    Zifeng Wang;Hanyin Wang;Benjamin Danek;Ying Li;Christina Mack;Luk Arbuckle;Devyani Biswal;Hoifung Poon;Yajuan Wang;Pranav Rajpurkar;Cao Xiao;Jimeng Sun
  • 通讯作者:
    Jimeng Sun
Disease-Specific Risk Prediction through Stability Selection using Electronic Health Records
使用电子健康记录通过稳定性选择来预测特定疾病的风险
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiayu Zhou;Jimeng Sun;Yashu Liu;Jianying Hu;Jieping Ye
  • 通讯作者:
    Jieping Ye
Recent Advances in Predictive Modeling with Electronic Health Records
电子健康记录预测建模的最新进展
  • DOI:
    10.48550/arxiv.2402.01077
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiaqi Wang;Junyu Luo;Muchao Ye;Xiaochen Wang;Yuan Zhong;Aofei Chang;Guanjie Huang;Ziyi Yin;Cao Xiao;Jimeng Sun;Fenglong Ma
  • 通讯作者:
    Fenglong Ma
M ULTIMODAL P ATIENT R EPRESENTATION L EARNING WITH M ISSING M ODALITIES AND L ABELS
缺少模式和标签的多模式患者代表学习
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenbang Wu;Anant Dadu;Nicholas J. Tustison;Brian B. Avants;M. Nalls;Jimeng Sun;F. Faghri
  • 通讯作者:
    F. Faghri

Jimeng Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jimeng Sun', 18)}}的其他基金

BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
  • 批准号:
    2034479
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
I-Corps: Brain Health Monitoring via Phenotyping Electroencephalogram Data
I-Corps:通过表型脑电图数据监测大脑健康
  • 批准号:
    2034497
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
SCH:INT: Collaborative Research: Deep Sense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:深度感知:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2014438
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Integrated Scalable Platform for Privacy-aware Collaborative Learning and Inference
协作研究:PPoSS:规划:用于隐私意识协作学习和推理的集成可扩展平台
  • 批准号:
    2028839
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
I-Corps: Brain Health Monitoring via Phenotyping Electroencephalogram Data
I-Corps:通过表型脑电图数据监测大脑健康
  • 批准号:
    1839478
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
  • 批准号:
    1838042
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306660
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
  • 批准号:
    2306708
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
  • 批准号:
    2306790
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306659
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
  • 批准号:
    2306740
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Psychophysiological sensing to enhance mindfulness-based interventions for self-regulation of opioid cravings
合作研究:SCH:心理生理学传感,以增强基于正念的干预措施,以自我调节阿片类药物的渴望
  • 批准号:
    2320678
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
  • 批准号:
    2306738
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
  • 批准号:
    2306792
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
  • 批准号:
    2306739
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
  • 批准号:
    2306709
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了